GEO

深入解析检索增强生成(RAG):原理、模块与应用

2026/1/24
深入解析检索增强生成(RAG):原理、模块与应用
AI Summary (BLUF)

RAG (Retrieval-Augmented Generation) is an AI technique that enhances large language models' performance on knowledge-intensive tasks by retrieving relevant information from external knowledge bases and using it as prompts. This approach significantly improves answer accuracy, especially for tasks requiring specialized knowledge. (RAG(检索增强生成)是一种人工智能技术,通过从外部知识库检索相关信息并作为提示输入给大型语言模型,来增强模型处理知识密集型任务的能力。这种方法显著提升了回答的精确度,特别适用于需要专业知识的任务。)

引言

Retrieval-Augmented Generation (RAG) is an advanced artificial intelligence technique that synergistically combines information retrieval systems with large language models (LLMs). Its primary objective is to significantly enhance the capability of LLMs in handling knowledge-intensive tasks by providing them with access to and grounding in external, authoritative knowledge sources. This approach addresses a critical limitation of pure generative models: their reliance on static, pre-trained knowledge which can lead to inaccuracies or hallucinations when faced with queries requiring up-to-date or domain-specific information. By dynamically retrieving relevant context, RAG enables models to generate more accurate, reliable, and contextually appropriate responses.

检索增强生成(RAG)是一种先进的人工智能技术,它将信息检索系统与大型语言模型(LLM)协同结合。其主要目标是通过为LLM提供访问外部权威知识源的能力,显著增强其处理知识密集型任务的能力。这种方法解决了纯生成模型的一个关键局限:即它们对静态预训练知识的依赖,当面对需要最新或特定领域信息的查询时,可能导致不准确或“幻觉”现象。通过动态检索相关上下文,RAG使模型能够生成更准确、可靠且符合语境的回答。

RAG 核心概念与工作原理

什么是 RAG?

RAG is a hybrid architecture that augments a generative language model with a retrieval component. When presented with a query, the system first consults a knowledge base (e.g., a vector database of document chunks) to find the most pertinent information. This retrieved context is then seamlessly integrated into the prompt sent to the LLM, guiding it to formulate an answer that is not only coherent but also factually grounded in the provided evidence. This process effectively bridges the gap between the vast parametric knowledge of an LLM and the precise, verifiable information contained in external corpora.

RAG 是一种混合架构,它通过检索组件来增强生成式语言模型。当接收到查询时,系统首先咨询知识库(例如,文档块的向量数据库)以查找最相关的信息。然后,检索到的上下文被无缝集成到发送给LLM的提示中,引导其生成一个不仅连贯、而且事实依据来源于所提供证据的答案。这个过程有效地弥合了LLM庞大的参数化知识与外部语料库中包含的精确、可验证信息之间的差距。

RAG 的核心工作流程

The operational pipeline of a standard RAG system can be distilled into three primary phases:

一个标准RAG系统的操作流程可以提炼为三个主要阶段:

  1. Retrieval Phase (检索阶段): Upon receiving a user query, it is converted into a numerical vector (embedding) using an embedding model. This query embedding is then used to perform a similarity search against a pre-indexed collection of document embeddings within a vector database. The top-k most semantically similar text chunks are retrieved.

    检索阶段:收到用户查询后,使用嵌入模型将其转换为数值向量(嵌入表示)。然后,利用该查询嵌入在向量数据库中对预索引的文档嵌入集合执行相似性搜索。检索出语义最相似的前k个文本块。

  2. Augmentation & Generation Phase (增强与生成阶段): The retrieved text chunks are concatenated and formatted, together with the original query, into a structured prompt. This enriched prompt, now containing both the question and the supporting evidence, is fed into the LLM. The model is instructed to generate an answer based strictly on the provided context.

    增强与生成阶段:检索到的文本块被连接并格式化,与原始查询一起构成一个结构化的提示。这个现在包含问题和支撑证据的增强提示被输入到LLM中。模型被指示严格基于提供的上下文生成答案。

  3. Post-Processing & Output Phase (后处理与输出阶段): The raw output from the LLM may undergo additional steps such as answer refinement, confidence scoring, citation of source chunks, or filtering through a re-ranker to select the best response from multiple candidates. The final, verified answer is then presented to the user.

    后处理与输出阶段:LLM的原始输出可能会经过额外的步骤,例如答案精炼、置信度评分、引用来源块,或通过重排序器进行过滤以从多个候选答案中选择最佳响应。最终,经过验证的答案呈现给用户。

RAG 系统的关键模块

Building a robust RAG system involves several interconnected modules, each serving a distinct purpose in the knowledge lifecycle.

构建一个健壮的RAG系统涉及多个相互关联的模块,每个模块在知识生命周期中扮演着独特的角色。

1. 文档处理与索引构建

This foundational stage involves preparing the raw knowledge sources for efficient retrieval. It typically includes:

这个基础阶段涉及准备原始知识源以实现高效检索。通常包括:

  • Document Parsing & Chunking (文档解析与分块): Raw documents (PDFs, Word files, web pages) are parsed to extract clean text. This text is then intelligently split into smaller, overlapping "chunks" of optimal size, balancing the need for context preservation and retrieval precision.

    文档解析与分块:解析原始文档(PDF、Word文件、网页)以提取干净的文本。然后将这些文本智能地分割成大小合适、可能重叠的较小“块”,以平衡保留上下文和检索精度的需求。

  • Embedding Generation (嵌入生成): Each text chunk is passed through an embedding model (e.g., OpenAI's text-embedding-ada-002, BGE, or a locally deployed model) to transform it into a high-dimensional vector that captures its semantic meaning.

    嵌入生成:每个文本块通过一个嵌入模型(例如,OpenAI的text-embedding-ada-002、BGE或本地部署的模型)进行处理,将其转换为捕获其语义信息的高维向量。

  • Vector Indexing (向量索引): The generated chunk embeddings are stored in a specialized vector database (e.g., Pinecone, Weaviate, Milvus, Qdrant) or a search library like FAISS. This index allows for ultra-fast approximate nearest neighbor (ANN) searches during the retrieval phase.

    向量索引:生成的块嵌入存储在专门的向量数据库(如Pinecone、Weaviate、Milvus、Qdrant)或像FAISS这样的搜索库中。该索引允许在检索阶段进行超快速的近似最近邻(ANN)搜索。

2. 检索与排序

This module handles the real-time interaction with the knowledge base.

该模块处理与知识库的实时交互。

  • Query Embedding (查询嵌入): The user's natural language query is converted into an embedding vector using the same model that indexed the documents, ensuring compatibility.

    查询嵌入:使用与索引文档相同的模型将用户的自然语言查询转换为嵌入向量,确保兼容性。

  • Semantic Search / Vector Retrieval (语义搜索/向量检索): The query embedding is used to search the vector index, returning the pre-defined number (k) of chunk embeddings with the highest cosine similarity or other distance metric scores.

    语义搜索/向量检索:使用查询嵌入搜索向量索引,返回具有最高余弦相似度或其他距离度量分数的预定数量(k)的块嵌入。

  • (Optional) Re-ranking ((可选)重排序): The initially retrieved chunks may be re-scored using a more computationally intensive but accurate cross-encoder model (e.g., BGE-Reranker). This step reorders the results to push the most relevant chunks to the top, improving the quality of context fed to the LLM.

    (可选)重排序:可以使用计算量更大但更精确的交叉编码器模型(例如BGE-Reranker)对初始检索到的块进行重新评分。此步骤对结果重新排序,将最相关的块推到顶部,从而提高输入给LLM的上下文质量。

3. 提示工程与生成

This is where retrieval meets generation. The core task is to construct an effective prompt.

这是检索与生成交汇的地方。核心任务是构建一个有效的提示。

  • Context Aggregation (上下文聚合): The top-ranked retrieved text chunks are concatenated into a single context string, often with clear separators and source identifiers.

    上下文聚合:排名靠前的检索文本块被连接成一个单一的上下文字符串,通常带有清晰的分隔符和来源标识符。

  • Prompt Templating (提示模板): A pre-defined prompt template is used to structure the final input to the LLM. A classic template includes: a system message defining the assistant's role (e.g., "You are a helpful assistant that answers questions based solely on the provided context."), the retrieved context itself, and the user's query. Instructions to cite sources and avoid extrapolation are crucial.

    提示模板:使用预定义的提示模板来构建最终输入给LLM的内容。一个经典的模板包括:定义助手角色的系统消息(例如,“你是一个乐于助人的助手,仅根据提供的上下文回答问题。”)、检索到的上下文本身以及用户的查询。指示引用来源和避免推测至关重要。

  • LLM Inference (LLM推理): The completed prompt is sent to the LLM (e.g., GPT-4, Claude, or an open-source model like Llama 3) for completion, resulting in the final answer.

    LLM推理:完整的提示被发送到LLM(例如GPT-4、Claude或像Llama 3这样的开源模型)进行补全,从而产生最终答案。

RAG 与其他技术路径的比较

Understanding RAG's position in the AI toolkit requires comparing it to alternative approaches.

理解RAG在AI工具包中的位置需要将其与其他替代方法进行比较。

RAG vs. 监督微调 (SFT)

  • RAG: Excels at integrating dynamic, external knowledge without modifying the core LLM parameters. It's ideal for scenarios where knowledge updates frequently, needs to be sourced from proprietary documents, or requires strict factual grounding. It offers "knowledge plasticity."

    RAG:擅长集成动态的外部知识,而无需修改核心LLM参数。它非常适合知识频繁更新、需要来源于专有文档或需要严格事实依据的场景。它提供了“知识可塑性”。

  • SFT (Supervised Fine-Tuning): Involves continuing the training of an LLM on a specific dataset to adapt its behavior, tone, or style to a particular domain or task (e.g., making it sound like a legal advisor). It changes the model's weights but does not inherently provide a mechanism for accessing new external knowledge post-training.

    监督微调 (SFT):涉及在特定数据集上继续训练LLM,使其行为、语气或风格适应特定领域或任务(例如,使其听起来像法律顾问)。它改变了模型的权重,但本身不提供在训练后访问新外部知识的机制。

  • Synergy: They are complementary. SFT can be used to tailor an LLM to better follow RAG-specific instructions (e.g., "answer based on the context"), while RAG provides the factual content. This combination is powerful.

    协同作用:它们是互补的。SFT可用于定制LLM,使其更好地遵循RAG特定的指令(例如,“基于上下文回答”),而RAG则提供事实内容。这种组合非常强大。

RAG vs. GraphRAG

  • Standard RAG: Treats the knowledge base as a "flat" collection of independent text chunks. Retrieval is based on semantic similarity between the query and each chunk.

    标准RAG:将知识库视为独立文本块的“扁平”集合。检索基于查询与每个块之间的语义相似性。

  • GraphRAG: Represents knowledge as a structured graph of entities (nodes) and their relationships (edges). Retrieval can leverage graph traversal algorithms, enabling more complex reasoning, such as multi-hop queries (e.g., "What did the CEO of Company A, which invested in Company B, say about technology trends?"). It provides deeper contextual understanding and can uncover implicit connections.

    GraphRAG:将知识表示为实体(节点)及其关系(边)的结构化图。检索可以利用图遍历算法,实现更复杂的推理,例如多跳查询(例如,“投资了B公司的A公司的CEO对技术趋势有何看法?”)。它提供了更深层次的上下文理解,并能发现隐含的联系。

(Note: The original input contained extensive promotional content about a specific AI learning course. As a technical editor, I have focused the rewrite solely on the core technical explanation of RAG, adhering to a professional, objective tone and the requested bilingual format. The promotional sections have been omitted to maintain the integrity and focus of a technical blog post.)

(注:原始输入包含大量关于特定AI学习课程的推广内容。作为技术编辑,本次改写仅专注于RAG的核心技术解释,遵循专业、客观的语气和要求的双语格式。为保持技术博客文章的完整性和重点,推广部分已被省略。)

← 返回文章列表
分享到:微博

版权与免责声明:本文仅用于信息分享与交流,不构成任何形式的法律、投资、医疗或其他专业建议,也不构成对任何结果的承诺或保证。

文中提及的商标、品牌、Logo、产品名称及相关图片/素材,其权利归各自合法权利人所有。本站内容可能基于公开资料整理,亦可能使用 AI 辅助生成或润色;我们尽力确保准确与合规,但不保证完整性、时效性与适用性,请读者自行甄别并以官方信息为准。

若本文内容或素材涉嫌侵权、隐私不当或存在错误,请相关权利人/当事人联系本站,我们将及时核实并采取删除、修正或下架等处理措施。 也请勿在评论或联系信息中提交身份证号、手机号、住址等个人敏感信息。