AI时代网站新标准:/llms.txt如何优化大语言模型对网站内容的理解
/llms.txt is a new standard that provides a structured Markdown guide for Large Language Models (LLMs) to efficiently understand website content. It addresses LLMs' challenges with complex HTML by offering a concise, organized overview of key content, similar to a sitemap for AI. /llms.txt 是一种新兴标准,通过结构化的Markdown文件为大型语言模型(LLM)提供网站核心内容的精简指南,旨在解决LLM解析复杂HTML的难题,提升AI理解网站的效率。
In the era of widespread artificial intelligence, particularly with the proliferation of Large Language Models (LLMs), a critical challenge has emerged: how can we enable LLMs to understand website content more efficiently and accurately? The emerging /llms.txt standard is a direct response to this need, designed to bridge the gap between complex web structures and AI comprehension.
在人工智能,特别是大语言模型(LLM)大型语言模型是驱动ChatGPT等AI系统的机器学习工具,能够理解和生成人类语言,但在不同问题表述下可能产生不一致答案。应用日益广泛的今天,如何让LLM更高效、更准确地理解我们的网站内容,成为了一个值得探索的问题。新兴的
/llms.txt标准正是为此而生,旨在弥合复杂网站结构与AI理解能力之间的鸿沟。
What is /llms.txt一种放置在网站根目录下的Markdown文件标准,旨在为大型语言模型提供网站核心内容的结构化指南,以提升AI理解网站的效率。?
Conceptually, /llms.txt is a special file placed in a website's root directory (e.g., https://example.com/llms.txt). Its core purpose is to serve as a clear, friendly "primer" or guidebook for LLMs, providing them with a structured overview of the website's most critical content.
从概念上讲,
/llms.txt是一个放置在网站根目录下的特殊文件(例如https://example.com/llms.txt)。其核心目标是充当LLM的清晰、友好的“导读手册”,为模型提供网站最关键内容的结构化概述。
This concept was first proposed by Jeremy Howard in September 2024 to address the challenges LLMs face when parsing complex web pages. Raw HTML is often cluttered with navigation elements, advertisements, scripts, and other noise irrelevant to the core content, making it difficult and inefficient for models to identify key information. /llms.txt acts as a tailored, simplified sitemap specifically for LLMs.
这一构想由 Jeremy Howard 在 2024 年 9 月首次提出,旨在解决LLM在解析复杂网页时面临的挑战。原始HTML通常包含导航、广告、脚本等大量与核心内容无关的干扰元素,导致模型难以快速抓住重点,效率低下。
/llms.txt就像是为LLM量身定制的一份精简版网站地图。
Why is /llms.txt一种放置在网站根目录下的Markdown文件标准,旨在为大型语言模型提供网站核心内容的结构化指南,以提升AI理解网站的效率。 Needed?
The rationale for implementing /llms.txt is grounded in several technical and practical benefits for AI-driven interactions.
实施
/llms.txt的理由基于其为AI驱动交互带来的多项技术和实践益处。
1. Overcoming Context Window Limitations
LLMs have finite input lengths, known as context windows. A /llms.txt file provides a concise summary of a website's essence, allowing the model to quickly grasp key information without needing to process the entire, potentially vast, site content.
突破上下文限制:LLM的输入长度(即上下文窗口LLM处理输入文本时的长度限制,超出部分可能被截断或忽略,影响模型对长内容的整体理解。)是有限的。
/llms.txt文件提供了网站核心的精要概述,使模型能够快速获取关键信息,而无需处理整个可能非常庞大的网站内容。
2. Reducing Parsing Overhead
Compared to the noisy and structurally complex HTML of a typical webpage, a well-structured /llms.txt file uses clean, semantic Markdown. This significantly reduces the computational and cognitive burden on the LLM, enabling faster and more accurate understanding of the website's purpose.
减轻解析负担:与典型网页中充满噪音且结构复杂的HTML相比,结构良好的
/llms.txt文件使用简洁、语义化的Markdown格式一种轻量级标记语言,使用简单符号(如#、-)定义标题、列表等结构,易于读写和解析,常用于文档编写。。这极大地减轻了LLM的计算和认知负担,使其能够更快、更准确地理解网站的宗旨。
3. Providing Precise Content Guidance
Analogous to how robots.txt guides web crawlers, /llms.txt is designed to direct LLMs to the most valuable sections of a site—such as API documentation, core product guides, or critical policy pages. This prevents the AI from getting lost in peripheral content and improves the relevance of its responses.
精准内容导向:类似于
robots.txt指导搜索引擎爬虫,/llms.txt旨在引导LLM直达网站最有价值的区域,例如API文档、核心产品指南或重要政策页面。这可以防止AI在无关信息中迷失,并提高其回答的相关性。
/llms.txt一种放置在网站根目录下的Markdown文件标准,旨在为大型语言模型提供网站核心内容的结构化指南,以提升AI理解网站的效率。 File Specification
A compliant /llms.txt file should adhere to a clear, structured format to maximize its utility for LLMs.
一份符合规范的
/llms.txt文件应遵循清晰、结构化的格式,以最大化其对LLM的效用。
The required and recommended structure is as follows:
所需及推荐的结构如下:
- H1 Title (Required): The clear name of the project or website.
H1 标题(必需):清晰的项目或网站名称。 - Blockquote: A brief, one or two-sentence summary that precisely describes the core purpose of the project or site.
块引用:一段简短的一到两句话概要,精准描述项目或网站的核心目的。 - Optional Preface/Context: Any additional background or architectural explanation needed for the links section.
可选前言/说明:为链接部分提供所需的额外背景信息或架构解释。 - Multiple H2 Sections: These categorize the website's key content areas (e.g., Core Documentation, Tutorials, Case Studies, Policies).
多个 H2 段落:将网站的关键内容分门别类(例如:核心文档、教程、案例、政策等)。 - Link Lists: Under each H2 category, use Markdown list syntax to list important links, each accompanied by a concise, descriptive explanation.
链接列表:在每个 H2 类别下,使用 Markdown 列表格式列出重要链接,并附上简明扼要的说明。 - "Optional" Section (Optional): A dedicated section for marking secondary or supplementary resources, explicitly signaling to the LLM that this content can be skipped if not directly relevant.
“Optional” 段落(可选):用于标记次要或补充性资源的专用段落,明确告知LLM这部分内容在非直接相关时可以跳过。
Example Structure
# My Awesome Project
> An open-source, powerful framework for building next-generation AI applications.
The following links point to the most essential documentation and resources for the project.
## Core Documentation
- [Quick Start Guide](https://example.com/start): Get your first project up and running in 5 minutes.
[快速入门指南](https://example.com/start):只需5分钟,开启您的第一个项目。
- [API Reference](https://example.com/api): Detailed specifications and usage examples for all interfaces.
[API 参考手册](https://example.com/api):所有接口的详细说明与用法示例。
## Tutorials & Examples
- [Hands-on Tutorial: Building a Chatbot](https://example.com/tutorial): A step-by-step guide from zero to a working prototype.
[实战教程:构建聊天机器人](https://example.com/tutorial):手把手教学,从零到一实现原型。
- [Example Projects Gallery](https://example.com/examples): A rich collection of application cases for reference and learning.
[示例项目库](https://example.com/examples):丰富的应用案例供您参考和学习。
## Optional
- [Community Forum](https://example.com/forum): Discuss and share insights with other developers.
[社区论坛](https://example.com/forum):与其他开发者交流心得。
- [Version Changelog](https://example.com/changelog): Review updates and changes across different releases.
[历史版本变更日志](https://example.com/changelog):了解各版本更新内容。
Derived Practices: /llms-full.txt/llms.txt的衍生实践,对于内容精简的网站,提供一个包含完整网站内容的Markdown文件,方便LLM一次性加载所有文档。 and Markdown Pages
The core idea of /llms.txt has inspired related practices for different content scales.
/llms.txt的核心思想催生了针对不同内容规模的衍生实践。
- /llms-full.txt/llms.txt的衍生实践,对于内容精简的网站,提供一个包含完整网站内容的Markdown文件,方便LLM一次性加载所有文档。: For websites with relatively concise content, one can provide an
/llms-full.txtfile containing the complete website content in Markdown format. This allows an LLM to load and comprehend all documentation in a single, clean pass.
/llms-full.txt/llms.txt的衍生实践,对于内容精简的网站,提供一个包含完整网站内容的Markdown文件,方便LLM一次性加载所有文档。:对于内容相对精简的网站,可以提供一个包含完整网站内容的Markdown文件(/llms-full.txt)。这方便LLM一次性加载并理解所有文档内容。 - .md Pages: Providing a Markdown version for each significant HTML page (e.g.,
page.html.md) offers LLMs an alternative pathway to obtain clean, semantic text. This avoids the complexity of parsing raw HTML for critical content.
.md 页面:为每个重要的HTML页面提供对应的Markdown版本(例如page.html.md)。这为LLM提供了一种获取页面清晰语义文本的替代途径,避免了解析原始HTML的复杂性。
Who Should Consider Using /llms.txt一种放置在网站根目录下的Markdown文件标准,旨在为大型语言模型提供网站核心内容的结构化指南,以提升AI理解网站的效率。?
This standard is particularly beneficial for specific types of websites where clear, efficient information retrieval by AI is valuable.
该标准对于特定类型的网站尤其有益,这些网站需要AI清晰、高效地检索信息。
- Developer Documentation Sites: Frameworks, API platforms, SDKs. Helps LLMs quickly navigate to key documentation entry points.
开发文档网站:框架、API 平台、SDK 等。便于LLM快速导航到关键文档入口。 - Corporate & Policy Sites: Company portals, service sites. Highlights organizational structure, core products/services, key policy terms, and resource centers.
企业官网与政策站点:公司门户、服务网站。突出组织结构、核心产品/服务、重要政策条款和资源中心。 - E-commerce Platforms: Improves the visibility and comprehensibility of key product pages, category descriptions, and help centers.
电商平台:提升关键产品页面、分类说明页面和帮助中心的可见性与可理解性。 - Educational Sites & Portfolios: Clearly presents curriculum systems, author bios, and project portfolios.
教育类网站/个人作品集:清晰展示课程体系、作者信息和项目作品集。
(Note: Due to length constraints, the analysis will continue by focusing on the current state of adoption and key implementation recommendations.)
(注:由于篇幅限制,后续分析将聚焦于当前采用现状和关键实施建议。)
Current State: Adoption & Industry Practice
As of early 2025, mainstream LLM services (e.g., OpenAI's ChatGPT, Google Gemini, Anthropic Claude) have not officially announced automatic fetching or parsing of /llms.txt files within their standard inference pipelines.
截至 2025 年初,主流LLM服务(如OpenAI的ChatGPT、Google Gemini、Anthropic Claude等)尚未官方宣布在其标准推理流程中自动抓取或解析
/llms.txt文件。
However, forward-looking exploration and practical implementation are already underway within the tech community:
然而,前瞻性的探索和实践已在技术社区中展开:
- Early Adopters: Leading companies like Anthropic, Cloudflare, and Mintlify have publicly deployed
/llms.txtfiles on their official websites.
早期采用者:Anthropic、Cloudflare、Mintlify 等知名公司已在其官方网站公开部署了/llms.txt文件。 - Tooling Support: Within the WordPress ecosystem, plugins such as Rank Math SEO PRO and Yoast SEO have begun integrating automatic
/llms.txtgeneration features. Major hosting platforms like Hostinger are also promoting and simplifying its deployment.
工具支持:在WordPress生态中,Rank Math SEO PRO 与 Yoast SEO 等插件已开始集成/llms.txt自动生成功能。Hostinger 等主流托管服务平台也在推广和简化其部署。 - Community Tracking: An enthusiastic community maintains a directory tracking domains that have implemented the standard, with over 2,000 entries recorded as of 2025.
社区追踪:热心社区维护着一个记录已实现该标准的域名的目录,截至 2025 年,已有超过 2000 个域名被收录。
Implementation Recommendations & Considerations
Deploying /llms.txt is straightforward, but should be done thoughtfully.
部署
/llms.txt很简单,但应深思熟虑地进行。
- Low-Cost Pilot: The barrier to entry is minimal—creating a simple Markdown file and deploying it to the site root. Maintenance cost is low. While immediate traffic impact may be negligible, early adoption prepares your site for the future.
试点成本低:入门门槛极低——只需创建一个简单的Markdown文件并部署到网站根目录。维护成本相对较低。虽然短期内可能不会带来显著的流量变化,但提前布局能为未来做好准备。 - Content Accuracy is Paramount: Ensure all links in
/llms.txtare valid and descriptions are accurate. Outdated or incorrect information can severely mislead LLMs, increasing the risk of "hallucinations" or inaccurate responses.
内容准确至上:务必保持/llms.txt中的链接有效、描述准确。过时或错误的信息会严重误导LLM,增加其产生“幻觉”(不准确回答)的风险。 - Complement, Don't Replace:
/llms.txtis a supplement to existing SEO files likerobots.txtandsitemap.xml, not a replacement. They serve different audiences (crawlers vs. LLMs) and should work in concert.
协同而非替代:/llms.txt是对现有SEO文件(如robots.txt,sitemap.xml)的补充而非替代品。它们服务于不同对象(爬虫 vs LLM),应各司其职,协同工作。 - Mind the Information Boundary: Be judicious about what content to include. Avoid listing internal documents, sensitive pages, or privacy-involving links in
/llms.txtto prevent unnecessary information exposure.
注意信息边界:谨慎选择列入的内容。避免将内部文档、敏感页面或涉及隐私的链接放入/llms.txt,防止不必要的信息暴露。
Embracing a Future-Proof Connection
The /llms.txt standard represents a forward-thinking approach to website optimization, specifically designed for the increasingly important AI visitor: the Large Language Model. By providing a well-structured, concisely written Markdown "guide," it efficiently communicates a website's core value to LLMs, with the potential to significantly enhance the accuracy and efficiency of AI tools in acquiring and understanding web context.
/llms.txt标准代表了一种前瞻性的网站优化思路,专为日益重要的AI访客——大语言模型而设计。它通过一份结构清晰、语言简练的Markdown“指南”,将网站的核心价值高效地传递给LLM,有望显著提升AI工具获取和理解网站上下文的准确性与效率。
While widespread official support from model providers is still pending, the concept and its practice have taken root within the technical community. Proactively deploying /llms.txt in conjunction with existing SEO tools and best practices lays the groundwork for a future AI-driven content retrieval ecosystem. It is a positive step towards more intelligent and efficient web interaction. Consider taking action now to prepare this "AI business card" for your website's future.
尽管目前缺乏模型提供商的广泛官方支持,但其理念和实践已在技术社区中生根发芽。结合现有的SEO工具和最佳实践,主动部署
/llms.txt,是在为未来的AI驱动内容检索生态打下基础,也是向更智能、更高效的网络交互迈出的积极一步。不妨现在就行动起来,为您的网站准备好这份面向未来的“AI名片”。
版权与免责声明:本文仅用于信息分享与交流,不构成任何形式的法律、投资、医疗或其他专业建议,也不构成对任何结果的承诺或保证。
文中提及的商标、品牌、Logo、产品名称及相关图片/素材,其权利归各自合法权利人所有。本站内容可能基于公开资料整理,亦可能使用 AI 辅助生成或润色;我们尽力确保准确与合规,但不保证完整性、时效性与适用性,请读者自行甄别并以官方信息为准。
若本文内容或素材涉嫌侵权、隐私不当或存在错误,请相关权利人/当事人联系本站,我们将及时核实并采取删除、修正或下架等处理措施。 也请勿在评论或联系信息中提交身份证号、手机号、住址等个人敏感信息。