DeepSeek-R1震撼发布:开源推理大模型性能直逼OpenAI o1,革新AI推理新范式
DeepSeek正式发布开源推理大模型DeepSeek-R1,性能对标OpenAI o1正式版。创新性地采用强化学习技术,在极少标注数据下显著提升模型推理能力,同时开源了从1.5B到70B的蒸馏小模型,为AI推理领域带来突破性进展。
就在刚刚,DeepSeek正式发布了其革命性的推理大模型DeepSeek-R1An open-source reasoning large language model developed by DeepSeek that performs comparably to OpenAI o1 on mathematical, coding, and natural language reasoning tasks.,并同步开源了模型权重!这一重磅发布标志着中国AI企业在推理模型领域迈出了里程碑式的一步。
三大核心亮点
1. 开源DeepSeek-R1An open-source reasoning large language model developed by DeepSeek that performs comparably to OpenAI o1 on mathematical, coding, and natural language reasoning tasks.推理大模型
DeepSeek-R1An open-source reasoning large language model developed by DeepSeek that performs comparably to OpenAI o1 on mathematical, coding, and natural language reasoning tasks.在数学、代码、自然语言推理等关键任务上,性能表现与OpenAI o1A proprietary reasoning large language model developed by OpenAI for advanced reasoning tasks.正式版不相上下。这意味着开源社区现在拥有了能与顶级闭源模型抗衡的推理工具!
2. 创新性的DeepSeek-R1-ZeroA variant of DeepSeek-R1 trained directly with reinforcement learning on the base model, skipping traditional supervised fine-tuning (SFT).
DeepSeek-R1-ZeroA variant of DeepSeek-R1 trained directly with reinforcement learning on the base model, skipping traditional supervised fine-tuning (SFT).采用了全新的训练范式:直接从预训练模型进行强化学习,跳过了传统的监督微调(SFT)阶段。这种“零SFT”方法展示了模型仅通过RL就能实现强大推理能力的惊人潜力。
3. 高效蒸馏小模型
通过DeepSeek-R1An open-source reasoning large language model developed by DeepSeek that performs comparably to OpenAI o1 on mathematical, coding, and natural language reasoning tasks.的输出,团队成功蒸馏了6个不同规模的小模型(1.5B、7B、8B、14B、32B、70B),其中32B和70B模型在多项能力上已经能够对标OpenAI o1-miniA smaller version of OpenAI's o1 reasoning model used as a performance benchmark.!
技术突破:强化学习驱动的推理革命
DeepSeek-R1An open-source reasoning large language model developed by DeepSeek that performs comparably to OpenAI o1 on mathematical, coding, and natural language reasoning tasks.在后训练阶段大规模应用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型的推理能力。这种创新方法不仅降低了训练成本,还开辟了AI模型训练的新路径。
训练方法对比
| 模型 | 训练方法 |
|---|---|
| DeepSeek-R1-ZeroA variant of DeepSeek-R1 trained directly with reinforcement learning on the base model, skipping traditional supervised fine-tuning (SFT). | 直接在基座上RL(无SFT) |
| DeepSeek-R1An open-source reasoning large language model developed by DeepSeek that performs comparably to OpenAI o1 on mathematical, coding, and natural language reasoning tasks. | 冷启动SFT → RL → COT + 通用数据SFT |
| 蒸馏小模型 | 使用80万数据进行SFT |
DeepSeek-R1-ZeroA variant of DeepSeek-R1 trained directly with reinforcement learning on the base model, skipping traditional supervised fine-tuning (SFT).:强化学习的奇迹
性能飞跃
在AIME 2024A benchmark test used to evaluate the performance of reasoning models, particularly in mathematical reasoning.基准测试中,DeepSeek-R1-ZeroA variant of DeepSeek-R1 trained directly with reinforcement learning on the base model, skipping traditional supervised fine-tuning (SFT).通过RL训练,pass@1分数从最初的15.6%跃升至71.0%,达到了与OpenAI-o1-0912A specific version of OpenAI's o1 model used as a performance benchmark in AIME 2024 testing.相当的水平。更令人惊叹的是,通过多数投票,其性能可进一步提升至86.7%,超越了OpenAI-o1-0912A specific version of OpenAI's o1 model used as a performance benchmark in AIME 2024 testing.!
“顿悟时刻”现象
在训练过程中,研究人员观察到了有趣的“顿悟时刻”——模型学会了为复杂问题分配更多思考时间,并能够重新评估初始方法。这种拟人化的思考过程展现了RL训练带来的意外惊喜。
DeepSeek-R1An open-source reasoning large language model developed by DeepSeek that performs comparably to OpenAI o1 on mathematical, coding, and natural language reasoning tasks.:四阶段训练流程
为了进一步提升性能和可读性,团队设计了四阶段训练流程:
- 冷启动阶段:使用数千个高质量长上下文数据进行微调,解决可读性问题
- 面向推理的RL:应用强化学习增强推理能力,引入语言一致性奖励
- 拒绝采样和SFT:收集约80万个样本进行监督微调
- 通用能力增强:加入写作、角色扮演等非推理任务数据
蒸馏技术:让小型模型也具备强大推理能力
通过直接使用DeepSeek-R1An open-source reasoning large language model developed by DeepSeek that performs comparably to OpenAI o1 on mathematical, coding, and natural language reasoning tasks.的80万SFT数据对QwenA series of large language models developed by Alibaba that were used in distillation experiments with DeepSeek-R1.和LlamaA family of open-source large language models developed by Meta that were used in distillation experiments with DeepSeek-R1.系列模型进行微调,成功为小型模型赋予了强大的推理能力。这种蒸馏方法显著提升了小模型在复杂任务上的表现,为边缘计算和移动端应用打开了新的大门。
开源生态建设
DeepSeek不仅开源了模型权重,还提供了详细的技术报告和完整的训练流程说明。这种开放的态度将极大推动整个AI社区的发展,让更多研究者和开发者能够基于这些先进技术进行创新。
未来展望
DeepSeek-R1An open-source reasoning large language model developed by DeepSeek that performs comparably to OpenAI o1 on mathematical, coding, and natural language reasoning tasks.的发布不仅是技术上的突破,更是开源AI生态建设的重要里程碑。随着推理模型的不断成熟,我们有理由相信,AI将在更多复杂任务中展现出人类级别的推理能力,为科学研究、工程开发、教育医疗等领域带来革命性变革。
技术资源
- DeepSeek-R1 GitHub仓库
- 技术报告:DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
本文基于DeepSeek官方发布信息和技术报告编写,旨在为读者提供最新、最准确的AI技术动态。
Data Analysis
| 模型/方法 | 核心特点 | 关键性能/备注 |
|---|---|---|
| DeepSeek-R1-ZeroA variant of DeepSeek-R1 trained directly with reinforcement learning on the base model, skipping traditional supervised fine-tuning (SFT). | 创新训练范式:直接从预训练模型进行强化学习,跳过监督微调(SFT)阶段。 | 在AIME 2024A benchmark test used to evaluate the performance of reasoning models, particularly in mathematical reasoning.测试中,pass@1分数从15.6%跃升至71.0%,与OpenAI-o1-0912A specific version of OpenAI's o1 model used as a performance benchmark in AIME 2024 testing.相当;多数投票下可达86.7%。 |
| DeepSeek-R1An open-source reasoning large language model developed by DeepSeek that performs comparably to OpenAI o1 on mathematical, coding, and natural language reasoning tasks. | 采用四阶段训练流程(冷启动SFT → RL → 拒绝采样SFT → 通用能力增强)。 | 在数学、代码、自然语言推理等任务上,性能与OpenAI o1A proprietary reasoning large language model developed by OpenAI for advanced reasoning tasks.正式版不相上下。 |
| 蒸馏小模型 (32B/70B) | 使用DeepSeek-R1An open-source reasoning large language model developed by DeepSeek that performs comparably to OpenAI o1 on mathematical, coding, and natural language reasoning tasks.的80万SFT数据对QwenA series of large language models developed by Alibaba that were used in distillation experiments with DeepSeek-R1./LlamaA family of open-source large language models developed by Meta that were used in distillation experiments with DeepSeek-R1.系列模型进行微调。 | 在多项能力上可对标OpenAI o1-miniA smaller version of OpenAI's o1 reasoning model used as a performance benchmark.。 |
| 传统方法 (对比) | 通常包含监督微调(SFT)阶段后再进行强化学习(RL)。 | 文中作为背景与DeepSeek-R1-ZeroA variant of DeepSeek-R1 trained directly with reinforcement learning on the base model, skipping traditional supervised fine-tuning (SFT).的“零SFT”方法进行对比。 |
Source/Note: Based on the provided text summarizing the DeepSeek-R1An open-source reasoning large language model developed by DeepSeek that performs comparably to OpenAI o1 on mathematical, coding, and natural language reasoning tasks. release and its technical report.
版权与免责声明:本文仅用于信息分享与交流,不构成任何形式的法律、投资、医疗或其他专业建议,也不构成对任何结果的承诺或保证。
文中提及的商标、品牌、Logo、产品名称及相关图片/素材,其权利归各自合法权利人所有。本站内容可能基于公开资料整理,亦可能使用 AI 辅助生成或润色;我们尽力确保准确与合规,但不保证完整性、时效性与适用性,请读者自行甄别并以官方信息为准。
若本文内容或素材涉嫌侵权、隐私不当或存在错误,请相关权利人/当事人联系本站,我们将及时核实并采取删除、修正或下架等处理措施。 也请勿在评论或联系信息中提交身份证号、手机号、住址等个人敏感信息。