GEO

FinRobot:金融AI代理平台,自动化股票分析与智能决策

2026/2/4
FinRobot:金融AI代理平台,自动化股票分析与智能决策
AI Summary (BLUF)

FinRobot is an AI agent platform specifically designed for the financial sector, integrating multiple AI technologies to provide automated stock analysis, financial evaluation, and report generation. It features a four-layer architecture with perception, brain, and action modules for intelligent decision-making, and includes an intelligent scheduler for optimized task allocation. Developers can use FinRobot to build financial AI applications and learn practical applications of large models in finance, making it a practical tool combining fintech and AI. (FinRobot是一个专为金融领域设计的AI代理平台,整合多种AI技术,提供自动化股票分析、财务评估和报告生成功能。平台采用四层架构,通过感知、大脑和行动模块实现智能决策,配有智能调度器优化任务分配。开发者可利用FinRobot构建金融AI应用,学习大模型在金融领域的实际应用,是金融科技与AI结合的实用工具。)

引言

FinRobot是一个专为金融领域设计的综合性AI代理平台。它超越了单一语言模型的应用范畴,整合了多种人工智能技术,旨在提供自动化股票分析、财务评估和报告生成等专业功能。该平台采用模块化的四层架构,通过感知、大脑和行动等核心模块实现智能决策,并配备智能调度器以优化任务分配。对于开发者和金融从业者而言,FinRobot不仅是一个实用的工具,更是学习和探索大模型在金融科技领域实际应用的绝佳平台。

FinRobot is a comprehensive AI agent platform specifically designed for the financial domain. It goes beyond the application scope of a single language model by integrating various artificial intelligence technologies to provide professional functions such as automated stock analysis, financial evaluation, and report generation. The platform employs a modular four-layer architecture, enabling intelligent decision-making through core modules like Perception, Brain, and Action, and is equipped with an intelligent scheduler to optimize task allocation. For developers and financial practitioners, FinRobot is not only a practical tool but also an excellent platform for learning and exploring the practical applications of large models in the field of financial technology.

核心概念:什么是AI代理

AI代理是一个智能实体,它利用大型语言模型作为其“大脑”,具备感知环境、做出决策并执行行动的能力。与传统的人工智能系统不同,AI代理能够进行独立思考,并利用各种工具逐步实现既定目标,展现出更高的自主性和适应性。

An AI agent is an intelligent entity that utilizes a large language model as its "brain," possessing the ability to perceive its environment, make decisions, and execute actions. Unlike traditional AI systems, AI agents are capable of independent thinking and can progressively achieve set goals using various tools, demonstrating greater autonomy and adaptability.

FinRobot Pro:AI驱动的股票研究平台

平台概述

FinRobot Pro是一个由AI驱动的专业股票研究平台。它利用大型语言模型和AI代理技术,自动化了原本需要大量人工的专业股票分析流程。

FinRobot Pro is an AI-driven professional stock research platform. It leverages large language models and AI agent technology to automate the professional stock analysis process that traditionally required significant manual effort.

主要特点

  • 自动化报告生成 – 能够即时生成专业的股票研究报告。
    • Automated Report Generation – Capable of generating professional stock research reports instantly.
  • 财务分析 – 对利润表、资产负债表和现金流量表进行深入分析。
    • Financial Analysis – Conducts in-depth analysis of income statements, balance sheets, and cash flow statements.
  • 估值分析 – 提供市盈率、企业价值/息税折旧摊销前利润倍数以及同行对比分析。
    • Valuation Analysis – Provides analysis on Price-to-Earnings (P/E) ratio, Enterprise Value to EBITDA (EV/EBITDA) multiples, and peer comparisons.
  • 风险评估 – 执行全面的投资风险评估。
    • Risk Assessment – Performs comprehensive investment risk assessment.

FinRobot 生态系统架构

FinRobot的整体框架被划分为四个独立的层次,每一层都旨在解决金融AI处理和应用中的特定方面:

The overall framework of FinRobot is divided into four independent layers, each designed to address specific aspects of financial AI processing and application:

  1. 金融AI代理:此层现在包含了金融链式思维提示,增强了复杂分析和决策能力。市场预测代理、文档分析代理和交易策略代理利用链式思维将复杂的金融挑战分解为逻辑步骤,结合先进的算法和领域知识,对接金融市场的动态变化,提供精准、可操作的洞察。
    • Financial AI Agent Layer: This layer now incorporates Financial Chain-of-Thought (CoT) prompting, enhancing complex analysis and decision-making capabilities. Agents such as Market Prediction, Document Analysis, and Trading Strategy utilize CoT to break down complex financial challenges into logical steps. By integrating advanced algorithms and domain expertise with the dynamics of financial markets, they deliver precise and actionable insights.
  2. 金融大语言模型算法层:该层配置并使用经过特别调整的模型,这些模型专门为特定领域和全球市场分析进行了优化。
    • Financial LLMs Algorithm Layer: This layer configures and employs specially fine-tuned models that are optimized for specific domains and global market analysis.
  3. LLMOps与DataOps层:LLMOps层实施多源集成策略,为特定的金融任务选择最合适的大语言模型,充分利用一系列最先进的模型。
    • LLMOps and DataOps Layer: The LLMOps layer implements a multi-source integration strategy, selecting the most suitable large language models for specific financial tasks by leveraging a range of state-of-the-art models.
  4. 多源大语言模型基础层:该基础层支持多种通用和专业大语言模型的即插即用功能。
    • Multi-source LLM Foundation Layer: This foundational layer supports the plug-and-play functionality of various general-purpose and specialized large language models.

FinRobot:代理工作流程

FinRobot的AI代理通过一个清晰的工作流程来运作:

FinRobot's AI agents operate through a clear workflow:

  1. 感知模块:此模块负责捕获并解释来自市场数据流、新闻和经济指标的多模态金融数据。它使用先进的技术将这些原始数据转化为结构化的格式,为后续分析做好准备。
    • Perception Module: This module is responsible for capturing and interpreting multimodal financial data from market data feeds, news, and economic indicators. It uses advanced techniques to transform this raw data into a structured format, preparing it for subsequent analysis.
  2. 大脑模块:作为核心处理单元,此模块通过大语言模型接收来自感知模块的数据。它利用金融链式思维过程,生成结构化的、可执行的指令。
    • Brain Module: Acting as the core processing unit, this module receives data from the Perception Module via large language models. It utilizes the Financial Chain-of-Thought process to generate structured, executable instructions.
  3. 行动模块:此模块负责执行来自大脑模块的指令。它通过调用各种工具,将分析得出的洞察转化为实际的操作。这些行动可能包括执行交易、调整投资组合、生成报告或发送警报,从而主动地对金融环境产生影响。
    • Action Module: This module is responsible for executing instructions from the Brain Module. It translates analytical insights into actionable outcomes by applying various tools. These actions may include executing trades, adjusting portfolios, generating reports, or sending alerts, thereby actively influencing the financial environment.

FinRobot:智能调度器

智能调度器是确保模型多样性并优化最合适大语言模型集成与选择的核心组件。

The Intelligent Scheduler is a core component that ensures model diversity and optimizes the integration and selection of the most suitable large language models.

  • 主管代理:该组件负责协调任务分配过程,确保任务能够根据各个代理的性能指标及其对特定任务的适应性进行合理分配。
    • Supervisor Agent: This component is responsible for coordinating the task allocation process, ensuring tasks are assigned appropriately based on each agent's performance metrics and suitability for specific tasks.
  • 代理注册:管理代理的注册和可用性跟踪,促进高效的任务分配过程。
    • Agent Registry: Manages the registration and availability tracking of agents, facilitating an efficient task allocation process.
  • 代理适配器:将代理的功能进行定制化调整,以适应特定的任务需求,从而提升其性能并增强其在整个系统中的集成度。
    • Agent Adapter: Tailors the capabilities of agents to fit specific task requirements, thereby enhancing their performance and improving their integration within the overall system.
  • 任务管理器:管理并存储多种基于大语言模型的通用代理和微调代理,这些代理针对各种金融任务进行了定制。管理器会定期更新这些代理,以确保其相关性和有效性。
    • Task Manager: Manages and stores various LLM-based general and fine-tuned agents that are customized for a range of financial tasks. The manager regularly updates these agents to ensure their relevance and effectiveness.

快速入门指南

安装步骤

  1. (推荐)创建新的虚拟环境
    conda create --name finrobot python=3.10
    conda activate finrobot
    
    • (Recommended) Create a new virtual environment
  2. 下载FinRobot仓库
    使用终端克隆仓库,或手动下载。
    git clone https://github.com/AI4Finance-Foundation/FinRobot.git
    cd FinRobot
    
    • Download the FinRobot repository
      Clone the repository using the terminal, or download it manually.
  3. 安装FinRobot及其依赖项
    从PyPI获取最新版本:
    pip install -U finrobot
    
    或直接从本仓库安装:
    pip install -e .
    
    • Install FinRobot and its dependencies
      Get the latest version from PyPI:
      Or install directly from this repository:
  4. 配置API密钥
    • OAI_CONFIG_LIST_sample 文件重命名为 OAI_CONFIG_LIST,删除其中的注释行,并添加您自己的OpenAI API密钥。
    • config_api_keys_sample 文件重命名为 config_api_keys,删除注释,并添加您的Finnhub、FinancialModelingPrep和SEC API密钥(用于生成财务报告)。
    • Configure API Keys
      • Rename the OAI_CONFIG_LIST_sample file to OAI_CONFIG_LIST, remove the comment lines within it, and add your own OpenAI API key.
      • Rename the config_api_keys_sample file to config_api_keys, remove the comments, and add your Finnhub, FinancialModelingPrep, and SEC API keys (for generating financial reports).
  5. 开始探索
    运行教程目录中的示例Notebook,例如:
    • agent_annual_report.ipynb
    • agent_fingpt_forecaster.ipynb
    • agent_trade_strategist.ipynb
    • Start Exploring
      Run the example notebooks in the tutorial directory, such as:

平台演示

1. 市场预测代理

此代理用于预测股票价格的未来走势方向。

This agent is used to predict the future direction of stock price movements.

功能描述:输入目标公司的股票代码、近期的基本财务数据以及相关市场新闻,代理将分析这些信息并预测该股票在未来一段时间(如下周)的价格走势。

Function Description: Input the stock ticker of the target company, recent fundamental financial data, and relevant market news. The agent will analyze this information and predict the price movement of the stock over a future period (e.g., the next week).

核心代码示例

Core Code Example:

# 导入 Import
import autogen
from finrobot.utils import get_current_date, register_keys_from_json
from finrobot.agents.workflow import SingleAssistant

# 配置 Configuration
llm_config = {
    "config_list": autogen.config_list_from_json(
        "../OAI_CONFIG_LIST",
        filter_dict={"model": ["gpt-4-0125-preview"]},
    ),
    "timeout": 120,
    "temperature": 0,
}
register_keys_from_json("../config_api_keys")

# 执行 Execution
company = "NVDA"
assistant = SingleAssistant(
    "Market_Analyst",
    llm_config,
    human_input_mode="NEVER", # 设置为 "ALWAYS" 以进行交互对话 Set to "ALWAYS" for interactive conversation
)
assistant.chat(
    f"利用提供的所有工具获取 {company} 在 {get_current_date()} 的可用信息。分析 {company} 的积极发展和潜在问题,"
    "每个方面列出 2-4 个最重要的因素并保持简洁。大部分因素应从与公司相关的新闻中推测。"
    f"然后对 {company} 股票价格在下周的走势做一个大致的预测(例如,涨/跌 2-3%)。并提供支持预测的总结分析。"
)

2. 用于报告撰写的财务分析代理

此代理用于自动化生成股票研究报告。

This agent is used to automate the generation of stock research reports.

功能描述:输入公司的10-K年度报告、相关财务数据和市场数据,代理将处理这些信息并输出一份结构完整的股票研究报告。

Function Description: Input the company's 10-K annual report, relevant financial data, and market data. The agent will process this information and output a well-structured stock research report.

核心代码示例

Core Code Example:

# 导入 Import
import os
import autogen
from textwrap import dedent
from finrobot.utils import register_keys_from_json
from finrobot.agents.workflow import SingleAssistantShadow

# 配置 Configuration
llm_config = {
    "config_list": autogen.config_list_from_json(
        "../OAI_CONFIG_LIST",
        filter_dict={"model": ["gpt-4-0125-preview"]},
    ),
    "timeout": 120,
    "temperature": 0.5,
}
register_keys_from_json("../config_api_keys")
work_dir = "../report" # 中间文件保存目录 Directory for saving intermediate files
os.makedirs(work_dir, exist_ok=True)

# 执行 Execution
assistant = SingleAssistantShadow(
    "Expert_Investor",
    llm_config,
    max_consecutive_auto_reply=None,
    human_input_mode="TERMINATE",
)
company = "Microsoft"
fyear = "2023"
message = dedent(
    f"""
    使用您所提供的工具,基于{company}的{fyear}年度10-K报告撰写一份年度报告,并将其格式化为PDF。
    请注意以下事项:
    -在开始之前明确解释您的工作计划。
    -一步一步使用工具,特别是在请求指令时要清晰。
    -所有的文件操作应在"{work_dir}"目录下进行。
    -一旦生成图像,请在聊天中显示。
    -所有段落应控制在400到450个字之间,直到明确完成这一要求之前,请勿生成PDF。
    """
)
assistant.chat(message, use_cache=True, max_turns=50, summary_method="last_msg")

财务推理链流程

该代理在生成报告时,通常会遵循一个结构化的“金融链式思维”流程:

When generating reports, this agent typically follows a structured "Financial Chain-of-Thought" process:

  1. 收集初步数据:获取10-K报告、市场数据、财务比率。
    • Gather Preliminary Data: Obtain the 10-K report, market data, and financial ratios.
  2. 分析财务报表:深入解读资产负债表、损益表和现金流量表。
    • Analyze Financial Statements: Conduct in-depth interpretation of the balance sheet, income statement, and cash flow statement.
  3. 公司概况与表现分析:总结公司简介、业务亮点并进行细分市场分析。
    • Company Profile and Performance Analysis: Summarize the company profile, business highlights, and conduct segment analysis.
  4. 风险评估:系统性地评估公司面临的各类风险。
    • Risk Assessment: Systematically evaluate various risks faced by the company.
  5. 财务表现可视化:绘制市盈率和每股收益等关键指标的图表。
    • Financial Performance Visualization: Create charts for key metrics such as P/E ratio and EPS.
  6. 综合分析与总结:将所有分析部分整合成一个连贯的总结段落。
    • Comprehensive Analysis and Summary: Integrate all analytical sections into a coherent summary paragraph.
  7. 生成PDF报告:调用工具自动将最终内容格式化为PDF文件。
    • Generate PDF Report: Invoke tools to automatically format the final content into a PDF file.
  8. 质量保证:检查最终报告是否符合字数、格式等要求。
    • Quality Assurance: Check if the final report meets requirements such as word count and format.

总结与展望

FinRobot作为一个开源的综合AI代理平台,成功地将先进的大语言模型技术与金融领域的专业知识相结合。其模块化架构、清晰的代理工作流程以及强大的智能调度器,使其能够灵活应对股票分析、风险评估、报告生成等多种复杂金融任务。通过提供详细的示例和教程,FinRobot极大地降低了开发者构建金融AI应用的门槛。

As an open-source comprehensive AI agent platform, FinRobot successfully integrates advanced large language model technology with professional expertise in the financial domain. Its modular architecture, clear agent workflow, and powerful intelligent scheduler enable it to flexibly handle various complex financial tasks such as stock analysis, risk assessment, and report generation. By providing detailed examples and tutorials, FinRobot significantly lowers the barrier for developers to build financial AI applications.

对于金融科技从业者、量化分析师以及AI开发者而言,FinRobot不仅是一个高效的生产力工具,更是一个探索AI在金融领域前沿应用的窗口。随着平台的持续发展和生态的完善,它有望在推动金融行业智能化转型中扮演更加重要的角色。

For fintech practitioners, quantitative analysts, and AI developers, FinRobot is not only an efficient productivity tool but also a window to explore cutting-edge applications of AI in finance. With the continuous development of the platform and the improvement of its ecosystem, it is poised to play an increasingly important role in promoting the intelligent transformation of the financial industry.


参考资料

  • [1] FinRobot 白皮书
  • [2] FinRobot Pro 平台: https://finrobot.ai/
← 返回文章列表
分享到:微博

版权与免责声明:本文仅用于信息分享与交流,不构成任何形式的法律、投资、医疗或其他专业建议,也不构成对任何结果的承诺或保证。

文中提及的商标、品牌、Logo、产品名称及相关图片/素材,其权利归各自合法权利人所有。本站内容可能基于公开资料整理,亦可能使用 AI 辅助生成或润色;我们尽力确保准确与合规,但不保证完整性、时效性与适用性,请读者自行甄别并以官方信息为准。

若本文内容或素材涉嫌侵权、隐私不当或存在错误,请相关权利人/当事人联系本站,我们将及时核实并采取删除、修正或下架等处理措施。 也请勿在评论或联系信息中提交身份证号、手机号、住址等个人敏感信息。