GEO

Papr Memory是什么?AI系统记忆层如何实现多跳RAG | Geoz.com.cn

2026/2/13
Papr Memory是什么?AI系统记忆层如何实现多跳RAG | Geoz.com.cn
AI Summary (BLUF)

Papr Memory is an advanced memory layer for AI systems that enables multi-hop RAG with state-of-the-art accuracy through real-time data ingestion, smart chunking, entity extraction, and dynamic knowledge graph creation. It supports various data sources and provides intelligent retrieval with query expansion, hybrid search, and contextual reranking. (Papr Memory 是一个先进的AI系统记忆层,通过实时数据摄取、智能分块、实体提取和动态知识图谱构建,实现具有最先进准确性的多跳检索增强生成。它支持多种数据源,并提供具有查询扩展、混合搜索和上下文重排的智能检索功能。)

Introduction

In the rapidly evolving landscape of Artificial Intelligence, the ability for systems to effectively remember, retrieve, and reason over context is the key differentiator between a simple chatbot and a truly intelligent assistant. Papr Memory is engineered as a foundational memory layer, designed to power sophisticated Retrieval-Augmented Generation (RAG) and agentic workflows with state-of-the-art accuracy and speed. It transforms raw data from diverse sources into a dynamic, interconnected knowledge system, enabling AI to understand not just information, but the rich relationships and history behind it.

在人工智能快速发展的格局中,系统能否有效地记忆、检索和基于上下文进行推理,是区分简单聊天机器人与真正智能助手的关键。Papr Memory 被设计为一个基础性的记忆层,旨在以最先进的准确性和速度,为复杂的检索增强生成(RAG)和智能体工作流提供动力。它将来自不同来源的原始数据转化为动态的、相互关联的知识系统,使人工智能不仅能理解信息,更能理解其背后丰富的关系和历史。

Powerful Features: The Fastest Path to Advanced RAG

Seamless Data Integration & Processing

Add data from any source including chat conversations, PDFs, videos, documents, and tools like Slack, GitHub, Jira, and more. The platform features real-time data ingestion and synchronization, automatic content extraction from PDFs, documents, and images, and a growing suite of connectors for popular productivity tools.

可以从任何来源添加数据,包括聊天对话、PDF、视频、文档以及 Slack、GitHub、Jira 等工具。该平台具有实时数据摄取和同步、从 PDF、文档和图像中自动提取内容的功能,并提供了越来越多针对流行生产力工具的连接器。

Intelligent Knowledge Structuring

At its core, Papr Memory employs smart chunking, entity extraction, embedding generation, and knowledge graph creation. It securely and efficiently stores permission-aware embeddings and knowledge graphs that are dynamically indexed. This architecture allows the system to predict and prepare the context users will need ahead of time for super-fast retrieval.

其核心在于采用了智能分块、实体提取、嵌入向量生成和知识图谱创建技术。它安全高效地存储具有权限感知的嵌入向量和动态索引的知识图谱。这种架构使系统能够预测并预先准备用户所需的上下文,从而实现超快速检索。

Advanced Retrieval & Reasoning

Go beyond simple keyword matching with:

  • Advanced Retrieval: Incorporating query expansion, hybrid search (semantic + keyword), and efficient multi-hop retrieval. Plus, direct GraphQL querying for deep insights.
  • Intelligent Reranking: Search results are reranked using relationship and semantic matching, relevance scoring, and contextual filters to surface the most pertinent information.

超越简单的关键词匹配,提供:

  • 高级检索:融合了查询扩展、混合搜索(语义+关键词)和高效的多跳检索。此外,还可通过 GraphQL 直接查询以获得深度洞察。
  • 智能重排序:利用关系和语义匹配、相关性评分及上下文过滤器对搜索结果进行重新排序,以呈现最相关的信息。

What Becomes Possible with Papr Memory

Papr Memory empowers a wide spectrum of applications, from simple chat use cases to complex, mission-critical workflows.

Papr Memory 为从简单的聊天用例到复杂的、关键任务的工作流等各种应用场景提供支持。

AI Assistants That Remember

Assistants gain long-term memory, recalling context across sessions to provide coherent and personalized interactions.

助手获得长期记忆,能够跨会话回忆上下文,从而提供连贯且个性化的交互。

Example: Travel Planning

  • User: "I need a flight to Tokyo for me and my wife."
  • AI (Leveraging Memory): "Booking your aisle seat and your wife's window seat." (Remembers user's seating preference and spouse's details from past conversations)

示例:旅行规划

  • 用户:“我需要为我和我妻子预订一张去东京的机票。”
  • AI(利用记忆):“正在为您预订靠过道的座位,为您妻子预订靠窗的座位。”(记住了用户过去的座位偏好和配偶详细信息)

Support That Remembers

AI support agents can access complete interaction history and product knowledge, instantly diagnosing issues based on past patterns.

AI 支持代理可以访问完整的交互历史记录和产品知识,根据过去的模式即时诊断问题。

Example: Technical Support

  • User: "My camera is blurry in low light."
  • AI: "Known bug → install firmware 1.5." (Identifies device model, recalls known issue from knowledge base, and provides specific fix)

示例:技术支持

  • 用户:“我的相机在弱光下拍摄模糊。”
  • AI:“已知漏洞 → 请安装固件 1.5。”(识别设备型号,从知识库中回忆已知问题,并提供具体解决方案)

Intelligent Patient Care

In healthcare, it enables systems that cross-reference medical history, treatment patterns, and drug databases for safer, informed decision support.

在医疗保健领域,它使系统能够交叉参考病史、治疗模式和药物数据库,为更安全的、基于信息的决策提供支持。

Example: Clinical Decision Support

  • Doctor: "Can I prescribe Lisinopril for patient #387?"
  • AI: "Warning: Interacts with current NSAID. Consider Losartan." (Flags drug conflict based on patient's active medications and suggests an alternative)

示例:临床决策支持

  • 医生:“我可以为 387 号患者开赖诺普利吗?”
  • AI:“警告:与当前服用的非甾体抗炎药存在相互作用。建议考虑氯沙坦。”(根据患者当前用药标记药物冲突,并提供替代方案)

Multi-Hop Retrieval Done Right

Papr Memory excels at handling semi-structured data, where the final answer requires connecting multiple pieces of information—a process known as multi-hop retrieval.

Papr Memory 擅长处理半结构化数据,这类数据的最终答案需要连接多个信息片段——这一过程被称为多跳检索。

Consider this scenario: You need to decide what to order for a guest.

  • Memory 1 (Event): "Pen is coming over next weekend." (date: 2025-05-03)
  • Memory 2 (Profile): "Pen loves eating pasta."
  • Memory 3 (Menu): Restaurant menu listing "Spaghetti Carbonara".

考虑以下场景:你需要为客人决定点什么菜。

  • 记忆 1(事件):“Pen 下周末要来。” (date: 2025-05-03)
  • 记忆 2(资料):“Pen 喜欢吃意大利面。”
  • 记忆 3(菜单):餐厅菜单列有“培根蛋酱意大利面”。
  • Semantic-Only Search: Querying "Pen is coming, what does she like?" might retrieve Memory 2, but fails to connect it to the menu.
  • Multi-Step Semantic Search: Requires sequential, manual-like queries: "Pen is coming, checking what she likes..." -> "Pen likes pasta... checking menu..." This is slow and brittle.
  • Papr (Semantic + Graph Search): In one efficient step, it traverses the knowledge graph: Event (Pen visiting) -> Entity (Pen) -> Attribute (likes pasta) -> Menu Item (contains pasta). Result: "Best: Pen is coming and she likes pasta. Order Spaghetti Carbonara."
  • 纯语义搜索:查询“Pen 要来,她喜欢什么?”可能会检索到记忆 2,但无法将其与菜单联系起来。
  • 多步语义搜索:需要顺序的、类似手动的查询:“Pen 要来,查一下她喜欢什么…” -> “Pen 喜欢意大利面…查一下菜单…”。这种方式速度慢且不稳定。
  • Papr(语义 + 图谱搜索):在一个高效的步骤中,它遍历知识图谱:事件(Pen 来访) -> 实体(Pen) -> 属性(喜欢意大利面) -> 菜单项(包含意大利面)结果:“最佳方案:Pen 要来并且她喜欢意大利面。点培根蛋酱意大利面。”

Launch at Superspeed

Kickstart your next project with production-ready templates built by us and our community.

利用我们及社区构建的生产就绪模板,快速启动您的下一个项目。

  • PDF Python PDF Chat App: A FastAPI application that allows users to upload PDFs and chat with their documents. Built with Papr Memory's context-aware system, this app enables truly intelligent document interactions.
  • Next.js Memory Starter: A Next.js App Router template configured with cookie-based auth using Supabase, TypeScript, and Papr Memory for powerful RAG experiences.
  • AI Chatbot: An open-source AI chatbot app template built with Next.js, the Vercel AI SDK, OpenAI, and Papr Memory for advanced RAG capabilities.
  • PDF Python PDF 聊天应用:一个 FastAPI 应用程序,允许用户上传 PDF 并与文档聊天。基于 Papr Memory 的上下文感知系统构建,该应用实现了真正智能的文档交互。
  • Next.js 内存启动模板:一个 Next.js App Router 模板,配置了使用 Supabase 的基于 cookie 的身份验证、TypeScript 和 Papr Memory,用于提供强大的 RAG 体验。
  • AI 聊天机器人:一个开源的 AI 聊天机器人应用模板,使用 Next.js、Vercel AI SDK、OpenAI 和 Papr Memory 构建,具备高级 RAG 功能。

What Our Customers Are Saying

"After trying every memory tool, API, and app on the market, only Papr consistently delivers. While others fail at retrieval, Papr just works. Their brain-inspired memory layer for AI isn't just an improvement—it's the fundamental infrastructure that will transform how AI systems understand, remember, and build upon context."

“在尝试了市场上所有的记忆工具、API 和应用后,只有 Papr 能够持续交付成果。当其他工具在检索上失败时,Papr 却能正常工作。他们受大脑启发的 AI 记忆层不仅仅是一种改进——它是将改变 AI 系统理解、记忆和构建上下文方式的基础设施。”


Papr Memory moves beyond being just a vector database or a simple cache. It is a comprehensive memory orchestration system that provides AI with the contextual depth and associative recall necessary for building reliable, insightful, and truly intelligent applications. By handling the complexity of knowledge structuring and retrieval, it allows developers to focus on creating exceptional user experiences.

Papr Memory 超越了单纯的向量数据库或简单缓存。它是一个全面的记忆编排系统,为 AI 提供了构建可靠、有洞察力且真正智能的应用所必需的上下文深度和关联记忆能力。通过处理知识结构和检索的复杂性,它让开发人员能够专注于创造卓越的用户体验。

← 返回文章列表
分享到:微博

版权与免责声明:本文仅用于信息分享与交流,不构成任何形式的法律、投资、医疗或其他专业建议,也不构成对任何结果的承诺或保证。

文中提及的商标、品牌、Logo、产品名称及相关图片/素材,其权利归各自合法权利人所有。本站内容可能基于公开资料整理,亦可能使用 AI 辅助生成或润色;我们尽力确保准确与合规,但不保证完整性、时效性与适用性,请读者自行甄别并以官方信息为准。

若本文内容或素材涉嫌侵权、隐私不当或存在错误,请相关权利人/当事人联系本站,我们将及时核实并采取删除、修正或下架等处理措施。 也请勿在评论或联系信息中提交身份证号、手机号、住址等个人敏感信息。