GEO

VoxCPM:突破语音合成瓶颈,分层语义-声学建模实现零样本性能飞跃

2026/1/21
VoxCPM:突破语音合成瓶颈,分层语义-声学建模实现零样本性能飞跃
AI Summary (BLUF)

VoxCPM is a novel tokenizer-free TTS model that resolves the trade-off between discrete tokens and continuous signals through hierarchical semantic-acoustic modeling, achieving state-of-the-art zero-shot performance on a 1.8M-hour bilingual corpus. (VoxCPM是一种新型无标记器TTS模型,通过分层语义-声学建模解决了离散标记与连续信号之间的权衡问题,在180万小时双语语料库上实现了最先进的零样本性能。)

Introduction (引言)

Generative models for speech synthesis face a fundamental trade-off: discrete tokens ensure stability but sacrifice expressivity, while continuous signals retain acoustic richness but suffer from error accumulation due to task entanglement. This challenge has driven the field towards multi-stage pipelines that rely on pre-trained speech tokenizers, but these create a semantic-acoustic divide, limiting holistic and expressive speech generation.

语音合成的生成模型面临一个根本性的权衡:离散标记确保了稳定性但牺牲了表现力,而连续信号保留了声学丰富性但会因任务纠缠而导致误差累积。这一挑战推动该领域转向依赖预训练语音标记器的多阶段流程,但这些方法造成了语义-声学鸿沟,限制了整体性和表现力的语音生成。

Hierarchical Semantic-Acoustic Modeling (分层语义-声学建模)

We resolve these dilemma through hierarchical semantic-acoustic modeling with semi-discrete residual representations and present a novel tokenizer-free TTS model VoxCPM. Our framework introduces a differentiable quantization bottleneck that induces natural specialization: a Text-Semantic Language Model (TSLM) generates semantic-prosodic plans, while a Residual Acoustic Model (RALM) recovers fine-grained acoustic details.

我们通过采用半离散残差表示分层语义-声学建模解决了这一困境,并提出了一种新型的无标记器TTS模型VoxCPM。我们的框架引入了一个可微分的量化瓶颈,诱导自然专业化:文本-语义语言模型(TSLM)生成语义-韵律计划,而残差声学模型(RALM)恢复细粒度的声学细节。

Technical Architecture (技术架构)

This hierarchical semantic-acoustic representation guides a local diffusion-based decoder to generate high-fidelity speech latents. Critically, the entire architecture is trained end-to-end under a simple diffusion objective, eliminating dependency on external speech tokenizers.

这种分层语义-声学表示引导基于局部扩散的解码器生成高保真语音潜在表示。关键的是,整个架构在简单的扩散目标下进行端到端训练,消除了对外部语音标记器的依赖。

Performance and Capabilities (性能与能力)

Trained on a massive 1.8 million hours of bilingual corpus, our VoxCPM-0.5B model achieves state-of-the-art zero-shot TTS performance among open-source systems, demonstrating that our approach delivers expressive and stable synthesis. Besides, VoxCPM shows the capability to comprehend text to infer and generate appropriate prosody and style, delivering speech with context-aware expressiveness and natural flow.

在180万小时的双语语料库上训练后,我们的VoxCPM-0.5B模型在开源系统中实现了最先进的零样本TTS性能,证明我们的方法能够提供富有表现力且稳定的合成效果。此外,VoxCPM展现出理解文本以推断和生成适当韵律和风格的能力,提供具有上下文感知表现力和自然流畅度的语音。

Open Source Accessibility (开源可访问性)

To facilitate community-driven research and development, VoxCPM is publicly accessible under Apache 2.0.

为促进社区驱动的研究与开发,VoxCPM在Apache 2.0许可下公开可访问。

Frequently Asked Questions (常见问题)

  1. VoxCPM模型的核心创新是什么?

    VoxCPM通过分层语义-声学建模半离散残差表示,解决了传统语音合成中离散标记与连续信号之间的权衡问题,实现了无需外部标记器的端到端训练。

  2. VoxCPM如何处理语义与声学信息?

    模型采用文本-语义语言模型(TSLM)生成语义-韵律计划,残差声学模型(RALM)恢复声学细节,通过可微分量化瓶颈实现自然专业化分工。

  3. VoxCPM的训练数据规模如何?

    根据技术报告,VoxCPM-0.5B模型在180万小时的双语语料库上进行训练,这是目前公开报道中规模较大的语音合成训练数据集之一。

  4. VoxCPM零样本TTS任务中的表现如何?

    在开源系统中,VoxCPM实现了最先进的零样本TTS性能,能够生成具有上下文感知表现力和自然流畅度的语音。

  5. VoxCPM是否支持中文语音合成?

    是的,VoxCPM在包含中文的双语语料库上训练,具备中文语音合成能力,并展现出对文本韵律和风格的深度理解。

← 返回文章列表
分享到:微博

版权与免责声明:本文仅用于信息分享与交流,不构成任何形式的法律、投资、医疗或其他专业建议,也不构成对任何结果的承诺或保证。

文中提及的商标、品牌、Logo、产品名称及相关图片/素材,其权利归各自合法权利人所有。本站内容可能基于公开资料整理,亦可能使用 AI 辅助生成或润色;我们尽力确保准确与合规,但不保证完整性、时效性与适用性,请读者自行甄别并以官方信息为准。

若本文内容或素材涉嫌侵权、隐私不当或存在错误,请相关权利人/当事人联系本站,我们将及时核实并采取删除、修正或下架等处理措施。 也请勿在评论或联系信息中提交身份证号、手机号、住址等个人敏感信息。