GEO

Zvec是什么?嵌入式向量数据库2024本地RAG应用指南 | Geoz.com.cn

2026/2/16
Zvec是什么?嵌入式向量数据库2024本地RAG应用指南 | Geoz.com.cn
AI Summary (BLUF)

Zvec is an embedded vector database designed for edge devices and local RAG applications, offering production-grade vector retrieval without external dependencies. (Zvec是一款专为边缘设备和本地RAG应用设计的嵌入式向量数据库,无需外部依赖即可提供生产级向量检索能力。)

引言:嵌入式向量数据库为何重塑 AI 部署格局?

现代 AI 应用正日益向本地化部署演进,而非完全依赖云端服务。无论是出于隐私保护的桌面工具、需要离线工作的移动应用,还是对响应延迟有毫秒级要求的嵌入式系统,开发者都面临一个共同的挑战:如何在资源受限的环境中实现高效的向量检索

现代 AI applications are increasingly shifting towards local deployment rather than relying solely on cloud services. Whether it's privacy-focused desktop tools, mobile applications that need to work offline, or embedded systems requiring millisecond-level response times, developers face a common challenge: how to achieve efficient vector retrieval in resource-constrained environments?

阿里巴巴通义实验室最新开源的 Zvec,正是为解决这一痛点而生。它被称为“向量数据库领域的 SQLite”——无需独立服务器,无需网络连接,仅需几行代码即可在您的 Python 应用中嵌入生产级的向量检索能力。

Alibaba's Tongyi Lab's newly open-sourced Zvec is designed precisely to address this pain point. Dubbed the "SQLite of the vector database world," it requires no independent server, no network connection, and embeds production-grade vector retrieval capabilities into your Python application with just a few lines of code.

核心解析:Zvec 是什么?它解决了哪些具体问题?

嵌入式架构的本质

Zvec 是一个进程内向量数据库。这意味着它作为一个库直接嵌入到您的应用程序进程中运行,而非作为独立的服务部署。

Zvec is an in-process vector database. This means it runs as a library directly embedded within your application process, rather than being deployed as a standalone service.

传统方案存在以下问题:

Traditional solutions face the following issues:

  • Faiss 等索引库仅提供近似最近邻搜索,缺乏标量存储、崩溃恢复和混合查询能力。
    • Index libraries like Faiss only provide Approximate Nearest Neighbor (ANN) search, lacking capabilities for scalar storage, crash recovery, and hybrid queries.

  • DuckDB-VSS 等嵌入式扩展提供的索引和量化选项有限,资源控制能力不足。
    • Embedded extensions like DuckDB-VSS offer limited indexing and quantization options and insufficient resource control capabilities.

  • Milvus 等服务化系统需要网络调用和独立部署,对于简单工具而言过于沉重。
    • Service-based systems like Milvus require network calls and independent deployment, making them overly heavy for simple tools.

Zvec 的解决方案Zvec 将向量原生引擎、持久化存储、资源治理和 RAG 专用特性打包成一个轻量级库。它可以直接运行在笔记本电脑、移动设备或其他受限硬件上,无需任何外部服务或守护进程。

Zvec's Solution: Zvec packages a vector-native engine, persistent storage, resource governance, and RAG-specific features into a lightweight library. It runs directly on laptops, mobile devices, or other constrained hardware without requiring any external services or daemons.

技术架构:Zvec 如何实现高性能与易用性的平衡?

基于 Proxima 的底层引擎

Zvec 的核心建立在 Proxima 之上——这是阿里巴巴达摩院自主研发的高性能向量检索引擎。Proxima 已在淘宝搜索推荐、支付宝人脸支付、优酷视频搜索、阿里妈妈广告搜索等核心业务中经受大规模生产环境的考验。

Zvec's core is built upon Proxima—a high-performance vector search engine independently developed by Alibaba DAMO Academy. Proxima has been rigorously tested in large-scale production environments within Alibaba's core businesses, such as Taobao search and recommendation, Alipay facial recognition payment, Youku video search, and Alimama ad search.

Proxima 的核心能力包括:

Proxima's core capabilities include:

  • 单机十亿级索引构建与检索
    • Billion-scale single-machine index building and retrieval

  • 支持 ARM64、x86、GPU 等多硬件平台
    • Support for multiple hardware platforms including ARM64, x86, and GPU

  • 实时流式索引与在线更新
    • Real-time streaming indexing and online updates

  • 标签与向量联合检索
    • Joint retrieval of tags and vectors

  • 异构计算优化(小批量、低延迟、高吞吐)
    • Heterogeneous computing optimization (small batch, low latency, high throughput)

ZvecProxima 的复杂能力封装为简洁的 Python API,同时保留了其生产级的稳定性。

Zvec encapsulates Proxima's complex capabilities into a concise Python API while preserving its production-grade stability.

明确的三重设计目标

Zvec 的设计哲学体现在三个明确的目标中:

Zvec's design philosophy is reflected in three clear goals:

设计目标 具体含义 实际价值
进程内嵌入式执行 作为库运行在应用进程中,无外部依赖 零运维成本,即插即用
> In-process Embedded Execution > Runs as a library within the application process, with no external dependencies > Zero operational overhead, plug-and-play
向量原生索引与存储 专为向量数据优化的索引结构和存储格式 高性能检索,低资源占用
> Vector-Native Indexing and Storage > Index structures and storage formats optimized specifically for vector data > High-performance retrieval, low resource consumption
生产级持久化与崩溃安全 支持事务性写入和崩溃恢复机制 数据不丢失,适合生产环境
> Production-grade Persistence and Crash Safety > Supports transactional writes and crash recovery mechanisms > Data integrity, suitable for production environments

开发者工作流:从安装到语义搜索的完整路径

第一步:安装与环境准备

Zvec 的安装极为简单,一条命令即可完成:

Installing Zvec is extremely simple and can be done with a single command:

pip install zvec

当前支持的环境:

Currently supported environments:

  • Python 3.10 至 3.12
    • Python 3.10 to 3.12

  • Linux x86_64 与 ARM64 架构
    • Linux x86_64 and ARM64 architectures

  • macOS ARM64 架构
    • macOS ARM64 architecture

第二步:定义数据模式

在使用 Zvec 前,您需要定义集合的模式,明确向量字段和可选的标量字段:

Before using Zvec, you need to define the schema for a collection, specifying vector fields and optional scalar fields:

import zvec

# 定义集合模式
# Define collection schema
schema = zvec.CollectionSchema(
    name="example",
    vectors=zvec.VectorSchema("embedding", zvec.DataType.VECTOR_FP32, 4),
)

关键概念解释:

Key concept explanation:

  • VectorSchema 定义向量字段的名称、数据类型(如 VECTOR_FP32)和维度(如 4 维)。
    • VectorSchema defines the name, data type (e.g., VECTOR_FP32), and dimensionality (e.g., 4 dimensions) of a vector field.

  • 可以定义多个向量字段,支持多向量检索场景。
    • Multiple vector fields can be defined, supporting multi-vector retrieval scenarios.

  • 标量字段可用于后续的混合过滤查询。
    • Scalar fields can be used for subsequent hybrid filtering queries.

第三步:创建或打开集合

# 创建或打开集合
# Create or open a collection
collection = zvec.create_and_open(
    path="./zvec_example", 
    schema=schema,
)

集合数据持久化在指定路径,下次打开时自动加载已有数据。

Collection data is persisted at the specified path and automatically loads existing data when opened next time.

第四步:插入文档

# 插入文档
# Insert documents
collection.insert([
    zvec.Doc(id="doc_1", vectors={"embedding": [0.1, 0.2, 0.3, 0.4]}),
    zvec.Doc(id="doc_2", vectors={"embedding": [0.2, 0.3, 0.4, 0.1]}),
])

每个文档包含:

Each document contains:

  • 唯一标识符 id
    • A unique identifier id

  • 向量数据(字典形式,键为向量字段名)
    • Vector data (in dictionary form, with keys as vector field names)

  • 可选的标量属性(如文本内容、时间戳、分类标签等)
    • Optional scalar attributes (such as text content, timestamps, category labels, etc.)

第五步:执行向量相似性搜索

# 执行向量查询
# Execute a vector query
results = collection.query(
    zvec.VectorQuery("embedding", vector=[0.4, 0.3, 0.3, 0.1]),
    topk=10
)

# 结果:按相关性排序的字典列表,包含 id、score 等字段
# Results: A list of dictionaries sorted by relevance, containing fields like id and score
print(results)

返回结果包含文档 ID 和相似度分数,默认按相关性降序排列。

The returned results include document IDs and similarity scores, sorted in descending order of relevance by default.

性能实测:Zvec 能否承载生产级负载?

VectorDBBench 基准测试结果

在权威的 VectorDBBench 测试中,Zvec 展现了令人印象深刻的性能:

In the authoritative VectorDBBench tests, Zvec demonstrated impressive performance:

测试条件

Test Conditions:

  • 数据集:Cohere 10M(1000 万条向量数据)
    • Dataset: Cohere 10M (10 million vector entries)

  • 硬件配置:与榜单其他系统可比的环境
    • Hardware Configuration: Environment comparable to other systems on the benchmark list

核心指标

Core Metrics:

  • 查询性能(QPS):超过 8,000 QPS
    • Query Performance (QPS): Over 8,000 QPS

  • 对比表现:是此前榜单第一(ZillizCloud)的 2 倍以上
    • Comparative Performance: More than 2 times the performance of the previous leader (ZillizCloud)

  • 索引构建时间:在相同配置下显著缩短
    • Index Build Time: Significantly reduced under the same configuration

图片来源:MarkTechPost

Image Source: MarkTechPost

技术实现细节

Zvec 通过以下技术手段实现高性能:

Zvec achieves high performance through the following technical means:

  • 多线程并行处理
    • Multi-threaded parallel processing

  • 缓存友好的内存布局
    • Cache-friendly memory layout

  • SIMD 指令优化
    • SIMD instruction optimization

  • CPU 预取技术
    • CPU prefetching techniques

这些优化使其在纯 CPU 环境下达到接近云服务的性能水平,证明了嵌入式架构在高吞吐量场景下的可行性。

These optimizations enable it to achieve performance levels close to cloud services in a pure CPU environment, demonstrating the feasibility of the embedded architecture in high-throughput scenarios.

RAG 专用能力:Zvec 如何支持现代检索增强生成工作流?

完整的 CRUD 操作

与只读索引库不同,Zvec 支持完整的文档生命周期管理:

Unlike read-only index libraries, Zvec supports full document lifecycle management:

  • 创建:插入新文档
    • Create: Insert new documents

  • 读取:向量相似性搜索
    • Read: Vector similarity search

  • 更新:修改现有文档的向量或标量字段
    • Update: Modify vector or scalar fields of existing documents

  • 删除:移除指定文档
    • Delete: Remove specified documents

这使得本地知识库可以随文件、笔记和项目状态的变化而动态演进,而非一次性静态索引。

This allows local knowledge bases to evolve dynamically with changes in files, notes, and project status, rather than being a one-time static index.

模式演进

实际应用中,数据需求会随时间变化。Zvec 支持模式演进,允许您:

In practical applications, data requirements change over time. Zvec supports schema evolution, allowing you to:

  • 调整索引策略(如从精确搜索改为近似搜索以提升性能)
    • Adjust indexing strategies (e.g., switching from exact search to approximate search for better performance)

  • 添加新的标量字段用于过滤
    • Add new scalar fields for filtering

  • 修改向量维度或数据类型
    • Modify vector dimensions or data types

向量检索

现代 RAG 系统常需融合多个维度的语义信息。Zvec 支持在单次查询中组合多个向量字段,例如:

Modern RAG systems often need to fuse semantic information from multiple dimensions. Zvec supports combining multiple vector fields in a single query, for example:

  • 同时匹配标题嵌入和内容嵌入
    • Simultaneously matching title embeddings and content embeddings

  • 结合图像向量与文本向量进行多模态搜索
    • Combining image vectors and text vectors for multimodal search

  • 对不同字段设置权重,实现精细化排序
    • Setting weights for different fields to achieve fine-grained ranking

内置重排序与融合机制

Zvec 提供开箱即用的结果优化工具:

Zvec provides out-of-the-box result optimization tools:

功能 说明 应用场景
加权融合 按自定义权重合并多路召回结果 混合不同检索策略的结果
> Weighted Fusion > Merges multiple retrieval results based on custom weights > Combining results from different retrieval strategies
倒数秩融合 使用 Reciprocal Rank Fusion 算法合并列表 无训练数据时的标准融合方案
> Reciprocal Rank Fusion (RRF) > Merges lists using the Reciprocal Rank Fusion algorithm > Standard fusion scheme when no training data is available
内置重排序器 对初步召回结果进行精细化排序 提升最终结果的准确性
> Built-in Re-ranker > Performs fine-grained sorting on initially retrieved results > Improves the accuracy of final results

标量-向量混合搜索

在实际 RAG 应用中,纯粹的语义相似往往不够。用户可能需要:

In practical RAG applications, pure semantic similarity is often insufficient. Users may need:

  • “找与查询语义相似且创建时间在最近一周内的文档”
    • "Find documents semantically similar to the query AND created within the last week."

  • “匹配嵌入相似性同时标签为‘技术文档’的条目”
    • "Match entries with similar embeddings AND labeled as 'technical documentation'."

  • “在特定用户的数据范围内进行向量搜索”
    • "Perform vector search within a specific user's data scope."

Zvec混合搜索将标量过滤器下推到索引执行路径,支持在向量检索的同时应用结构化条件。可选的倒排索引进一步加速标量属性的过滤。

Zvec's hybrid search pushes scalar filters down to the index execution path, supporting the application of structured conditions alongside vector retrieval. Optional inverted indexes further accelerate the filtering of scalar attributes.

资源治理:如何在边缘设备上控制开销?

显式资源控制机制

Zvec 针对资源受限场景提供细粒度的控制选项:

Zvec provides fine-grained control options for resource-constrained scenarios:

存储与内存

Storage and Memory:

  • 64 MB 流式写入:控制单次写入批次大小,避免内存峰值。
    • 64 MB Streaming Write: Controls the batch size for single writes to avoid memory spikes.

  • 可选的 mmap 模式:将大索引映射到虚拟内存,减少物理内存占用。
    • Optional mmap Mode: Maps large indexes to virtual memory, reducing physical memory usage.

  • 实验性 memory_limit_mb:设置内存使用上限。
    • Experimental memory_limit_mb: Sets an upper limit for memory usage.

计算资源

Computational Resources:

  • concurrency:控制并发查询数。
    • concurrency: Controls the number of concurrent queries.

  • optimize_threads:索引优化线程数。
    • optimize_threads: Number of threads for index optimization.

  • query_threads:查询执行线程数。
    • query_threads: Number of threads for query execution.

这些参数允许开发者根据硬件能力精确调整,在性能与资源占用间取得平衡。

These parameters allow developers to precisely tune the system based on hardware capabilities, achieving a balance between performance and resource consumption.

应用场景:谁应该考虑使用 Zvec

场景一:隐私优先的本地知识库

问题:企业文档包含敏感信息,无法上传至云端向量服务。

Problem: Corporate documents contain sensitive information and cannot be uploaded to cloud vector services.

Zvec 方案

Zvec Solution:

  • 在本地笔记本或私有服务器部署。
    • Deploy on a local laptop or private server.

  • 文档嵌入与检索完全离线进行。
    • Perform document embedding and retrieval completely offline.

  • 支持动态增量更新,随文档库增长自动扩展。
    • Supports dynamic incremental updates, automatically scaling as the document library grows.

场景二:移动设备上的智能助手

问题:手机 App 需要实现本地语义搜索,但无法依赖网络连接。

Problem: A mobile app needs to implement local semantic search but cannot rely on network connectivity.

Zvec 方案

Zvec Solution:

  • 作为库嵌入 iOS/Android 应用(通过 Python 层或未来原生 SDK)。
    • Embed as a library in iOS/Android applications (via a Python layer or future native SDKs).

  • 轻量级索引适合 GB 级数据。
    • Lightweight indexing is suitable for GB-scale data.

  • 低延迟查询提供即时响应体验。
    • Low-l

← 返回文章列表
分享到:微博

版权与免责声明:本文仅用于信息分享与交流,不构成任何形式的法律、投资、医疗或其他专业建议,也不构成对任何结果的承诺或保证。

文中提及的商标、品牌、Logo、产品名称及相关图片/素材,其权利归各自合法权利人所有。本站内容可能基于公开资料整理,亦可能使用 AI 辅助生成或润色;我们尽力确保准确与合规,但不保证完整性、时效性与适用性,请读者自行甄别并以官方信息为准。

若本文内容或素材涉嫌侵权、隐私不当或存在错误,请相关权利人/当事人联系本站,我们将及时核实并采取删除、修正或下架等处理措施。 也请勿在评论或联系信息中提交身份证号、手机号、住址等个人敏感信息。