GEO

微软Agent Framework深度解析:简化AI智能体开发与编排

2026/1/21
微软Agent Framework深度解析:简化AI智能体开发与编排
AI Summary (BLUF)

Microsoft Agent Framework simplifies AI agent development by reducing orchestration complexity and supporting multi-agent workflows through familiar .NET patterns, enabling production-ready deployment with minimal code. (微软Agent Framework通过降低编排复杂性并通过熟悉的.NET模式支持多智能体工作流来简化AI智能体开发,实现以最少代码进行生产就绪部署。)

BLUF: Executive Summary (执行摘要)

Microsoft Agent Framework is a comprehensive .NET library designed to simplify AI agent development by reducing complexity in orchestration, multi-model integration, and deployment infrastructure. According to Microsoft's technical announcement, it enables developers to build production-ready agents with minimal boilerplate code while supporting sophisticated multi-agent workflows through familiar .NET patterns.

Microsoft Agent Framework 是一个全面的 .NET 库,旨在通过降低编排、多模型集成和部署基础设施的复杂性来简化 AI 智能体开发。根据微软的技术公告,它使开发人员能够以最少的样板代码构建生产就绪的智能体,同时通过熟悉的 .NET 模式支持复杂的多智能体工作流。

Understanding Core Concepts: Agent vs. Workflow (核心概念:智能体与工作流)

Defining AI Agents (定义AI智能体)

In the context of AI systems, an agent refers to a system designed to achieve specific goals through autonomous operation. According to industry reports, modern AI agents typically exhibit three key capabilities that enhance their effectiveness:

在 AI 系统背景下,智能体指的是通过自主操作实现特定目标的系统。根据行业报告,现代 AI 智能体通常表现出三个关键能力以增强其有效性:

  1. Reasoning and Decision-Making (推理与决策): Powered by LLMs, search algorithms, or planning systems
  2. Tool Usage (工具使用): Access to MCP servers, code execution, and external APIs
  3. Context Awareness (情境感知): Informed by chat history, vector stores, enterprise data, or knowledge graphs

Understanding Workflows (理解工作流)

As goals increase in complexity, they require decomposition into manageable steps—this is where workflows become essential. A workflow defines the sequence of steps necessary to achieve an objective, whether simple or complex.

随着目标复杂性的增加,需要将其分解为可管理的步骤——这就是工作流变得至关重要的地方。工作流定义了实现目标所需的步骤顺序,无论是简单还是复杂的目标。

Agent + Workflow Synergy (智能体与工作流的协同)

While workflows don't require agents, agents can significantly enhance workflows. When agents possess reasoning capabilities, tools, and context, they can optimize workflow execution. This synergy forms the foundation of multi-agent systems where agents collaborate within workflows to achieve complex objectives.

虽然工作流不需要智能体,但智能体可以显著增强工作流。当智能体具备推理能力、工具和上下文时,它们可以优化工作流执行。这种协同作用构成了多智能体系统的基础,其中智能体在工作流内协作以实现复杂目标。

Introducing Microsoft Agent Framework (微软Agent Framework介绍)

Framework Overview (框架概述)

Microsoft Agent Framework is a complete .NET library that reduces the complexity of agent development. Whether building simple chatbots or orchestrating multiple AI agents in complex workflows, the framework provides essential tools for:

Microsoft Agent Framework 是一个完整的 .NET 库,可降低智能体开发的复杂性。无论是构建简单的聊天机器人还是在复杂工作流中编排多个 AI 智能体,该框架都提供了以下基本工具:

  1. Building agents with minimal boilerplate code (使用最少的样板代码构建智能体)
  2. Easily orchestrating multi-agent workflows (轻松编排多智能体工作流)
  3. Hosting and deploying agents using familiar .NET patterns (使用熟悉的 .NET 模式托管和部署智能体)
  4. Monitoring and observing agent behavior in production (监控和观察生产环境中的智能体行为)

Built on Proven Foundations (基于成熟基础构建)

The framework leverages established technologies to simplify agent development for .NET developers:

该框架利用成熟技术简化 .NET 开发人员的智能体开发:

  • Semantic Kernel – Provides powerful orchestration capabilities (提供强大的编排能力)
  • AutoGen – Supports advanced multi-agent collaboration and research-driven techniques (支持先进的多智能体协作和研究驱动技术)
  • Microsoft.Extensions.AI – Offers standardized AI building blocks for .NET (为 .NET 提供标准化的 AI 构建模块)

By integrating these technologies, Agent Framework delivers reliability, flexibility, and developer-friendly APIs that enable rapid construction and deployment of robust AI agents.

通过整合这些技术,Agent Framework 提供了可靠性、灵活性和开发者友好的 API,能够快速构建和部署强大的 AI 智能体。

Getting Started: Building Your First Agent (入门:构建您的第一个智能体)

Step-by-Step Implementation (分步实施)

The fastest way to experiment is through the Hello World Agents example in GitHub Codespaces. For local setup, follow these steps:

最快的实验方法是通过 GitHub Codespaces 中的 Hello World Agents 示例。对于本地设置,请按照以下步骤操作:

Step 0: Configure Prerequisites (步骤0:配置先决条件)

  • .NET 9 SDK or later (.NET 9 SDK 或更高版本)
  • GitHub Personal Access Token with model scope (包含模型范围的 GitHub 个人访问令牌)

Step 1: Create Project (步骤1:创建项目)

dotnet new console -o HelloWorldAgents
cd HelloWorldAgents
dotnet add package Microsoft.Agents.AI --prerelease
dotnet add package OpenAI
dotnet add package Microsoft.Extensions.AI.OpenAI --prerelease
dotnet add package Microsoft.Extensions.AI

Step 2: Write Your Agent (步骤2:编写您的智能体)

using Microsoft.Extensions.AI;
using Microsoft.Agents.AI;
using OpenAI;
using OpenAI.Chat;
using System.ClientModel;

IChatClient chatClient =
    new ChatClient(
            "gpt-4o-mini",
            new ApiKeyCredential(Environment.GetEnvironmentVariable("GITHUB_TOKEN")!),
            new OpenAIClientOptions { Endpoint = new Uri("https://models.github.ai/inference") })
        .AsIChatClient();

AIAgent writer = new ChatClientAgent(
    chatClient,
    new ChatClientAgentOptions
    {
        Name = "Writer",
        Instructions = "Write stories that are engaging and creative."
    });

AgentRunResponse response = await writer.RunAsync("Write a short story about a haunted house.");
Console.WriteLine(response.Text);

The Power of Abstraction (抽象的力量)

Microsoft Agent Framework is designed around powerful abstractions that simplify agent development. At its core is the AIAgent abstraction, which provides a unified interface for building agents. Microsoft.Extensions.AI offers flexibility through the IChatClient interface, standardizing model access across various providers including OpenAI, Azure OpenAI, Foundry Local, Ollama, and GitHub Models.

Microsoft Agent Framework 围绕强大的抽象概念设计,以简化智能体开发。其核心是AIAgent抽象,为构建智能体提供了统一的接口。Microsoft.Extensions.AI 通过IChatClient接口提供灵活性,标准化了跨各种提供程序(包括 OpenAI、Azure OpenAI、Foundry Local、Ollama 和 GitHub Models)的模型访问。

Advanced Capabilities: Multi-Agent Orchestration (高级能力:多智能体编排)

Coordinating Specialized Agents (协调专业化智能体)

While single agents are powerful, real-world scenarios often require multiple specialized agents working together. Agent Framework makes multi-agent coordination as simple as connecting building blocks.

虽然单个智能体功能强大,但实际场景通常需要多个专业化智能体协同工作。Agent Framework 使多智能体协调变得像连接构建块一样简单。

Example: Adding an Editor Agent (示例:添加编辑智能体)

// Create a specialized editor agent
AIAgent editor = new ChatClientAgent(
    chatClient,
    new ChatClientAgentOptions
    {
        Name = "Editor",
        Instructions = "Make the story more engaging, fix grammar, and enhance the plot."
    });

Building Workflows (构建工作流)

Install the workflow package and create sequential workflows:

安装工作流包并创建顺序工作流:

dotnet add package Microsoft.Agents.AI.Workflows --prerelease
// Create a workflow that connects writer to editor
Workflow workflow =
    AgentWorkflowBuilder
        .BuildSequential(writer, editor);

AIAgent workflowAgent = await workflow.AsAgentAsync();
AgentRunResponse workflowResponse =
    await workflowAgent.RunAsync("Write a short story about a haunted house.");
Console.WriteLine(workflowResponse.Text);

Workflow Patterns (工作流模式)

Microsoft Agent Framework supports multiple workflow patterns to meet different requirements:

Microsoft Agent Framework 支持多种工作流模式以满足不同需求:

  1. Sequential (顺序): Agents execute in sequence, passing results along the chain
  2. Concurrent (并发): Multiple agents work in parallel on different aspects of a task
  3. Switching (切换): Responsibilities switch between agents based on context or results
  4. Group Chat (群聊): Agents collaborate in a shared, real-time conversation space

Empowering Agents with Tools (使用工具赋能智能体)

Creating Agent Tools (创建智能体工具)

Microsoft Agent Framework enables agents to easily access external functions, APIs, and services. Tools can be created using simple function definitions:

Microsoft Agent Framework 使智能体能够轻松访问外部功能、API 和服务。可以使用简单的函数定义创建工具:

[Description("Gets the author of the story.")]
string GetAuthor() => "Jack Torrance";

[Description("Formats the story for display.")]
string FormatStory(string title, string author, string story) =>
    $"Title: {title}\nAuthor: {author}\n\n{story}";

Connecting Tools to Agents (将工具连接到智能体)

AIAgent writer = new ChatClientAgent(
    chatClient,
    new ChatClientAgentOptions
    {
        Name = "Writer",
        Instructions = "Write stories that are engaging and creative.",
        ChatOptions = new ChatOptions
        {
            Tools = [
                AIFunctionFactory.Create(GetAuthor),
                AIFunctionFactory.Create(FormatStory)
            ],
        }
    });

Advanced Tool Integration (高级工具集成)

Built on Microsoft.Extensions.AI, agents can leverage more powerful tools including:

基于 Microsoft.Extensions.AI 构建,智能体可以利用更强大的工具,包括:

  • Model Context Protocol (MCP) Servers – Connect to external services like databases, APIs, and third-party tools (模型上下文协议服务器 – 连接到数据库、API 和第三方工具等外部服务)
  • Hosted Tools – Access server-side tools like code interpreters and Bing Grounding (托管工具 – 访问代码解释器和 Bing Grounding 等服务器端工具)

Deployment Made Simple: Production Hosting (简化部署:生产托管)

Web API Integration (Web API 集成)

Integrating agents into REST APIs requires minimal code in ASP.NET Minimal Web APIs:

将智能体集成到 REST API 中,在 ASP.NET Minimal Web API 中只需最少的代码:

builder.AddOpenAIClient("chat")
    .AddChatClient(Environment.GetEnvironmentVariable("MODEL_NAME")!);

builder.AddAIAgent("Writer", (sp, key) =>
{
    var chatClient = sp.GetRequiredService<IChatClient>();
    return new ChatClientAgent(
        chatClient,
        name: key,
        instructions:
            """
            You are a creative writing assistant who crafts vivid, 
            well-structured stories with compelling characters based on user prompts, 
            and formats them after writing.
            """,
        tools: [
            AIFunctionFactory.Create(GetAuthor),
            AIFunctionFactory.Create(FormatStory)
        ]
    );
});

Frequently Asked Questions (常见问题)

  1. Microsoft Agent Framework 的主要优势是什么?

    Microsoft Agent Framework 的主要优势在于显著降低了 AI 智能体开发的复杂性,通过提供统一的 .NET 接口、最小化样板代码需求、支持多智能体编排,并利用成熟的底层技术(如 Semantic Kernel 和 AutoGen)确保可靠性和灵活性。

  2. 该框架支持哪些 AI 模型提供程序?

    框架通过 IChatClient 接口标准化模型访问,支持 OpenAI、Azure OpenAI、Foundry Local、Ollama、GitHub Models 等多种提供程序,并可轻松集成新的提供程序而无需更改智能体代码。

  3. 如何实现多智能体协作?

    通过 Microsoft.Agents.AI.Workflows 包,开发者可以创建顺序、并发、切换和群聊等多种工作流模式,将专业化智能体连接起来实现复杂任务,整个工作流对外表现为单一、更强大的智能体。

  4. 智能体如何访问外部工具和服务?

    框架支持通过 AIFunctionFactory 创建自定义工具函数,并可集成 Model Context Protocol (MCP) 服务器来连接数据库、API 等外部服务,以及访问代码解释器、Bing Grounding 等托管工具。

  5. 部署到生产环境有哪些注意事项?

    框架与现有的 .NET 托管模式无缝集成,支持通过 ASP.NET Minimal Web API 快速创建 REST 端点,使用 Microsoft.Agents.AI.Hosting 包进行智能体注册,并提供生产环境中的监控和观察能力。

← 返回文章列表
分享到:微博

版权与免责声明:本文仅用于信息分享与交流,不构成任何形式的法律、投资、医疗或其他专业建议,也不构成对任何结果的承诺或保证。

文中提及的商标、品牌、Logo、产品名称及相关图片/素材,其权利归各自合法权利人所有。本站内容可能基于公开资料整理,亦可能使用 AI 辅助生成或润色;我们尽力确保准确与合规,但不保证完整性、时效性与适用性,请读者自行甄别并以官方信息为准。

若本文内容或素材涉嫌侵权、隐私不当或存在错误,请相关权利人/当事人联系本站,我们将及时核实并采取删除、修正或下架等处理措施。 也请勿在评论或联系信息中提交身份证号、手机号、住址等个人敏感信息。