Reinforcement Learning from Human Feedback (RLHF) is a machine learning technique that optimizes AI agent performance by training a reward model using direct human feedback. It is particularly effective for tasks with complex, ill-defined, or difficult-to-specify objectives, such as improving the relevance, accuracy, and ethics of large language models (LLMs) in chatbot applications. RLHF typically involves four phases: pre-training model, supervised fine-tuning, reward model training, and policy optimization, with proximal policy optimization (PPO) being a key algorithm. While RLHF has demonstrated remarkable results in training AI agents for complex tasks from robotics to NLP, it faces limitations including the high cost of human preference data, the subjectivity of human opinions, and risks of overfitting and bias. (RLHF(基于人类反馈的强化学习)是一种机器学习技术,通过使用直接的人类反馈训练奖励模型来优化AI代理的性能。它特别适用于具有复杂、定义不明确或难以指定目标的任务,例如提高大型语言模型(LLM)在聊天机器人应用中的相关性、准确性和伦理性。RLHF通常包括四个阶段:预训练模型、监督微调、奖励模型训练和策略优化,其中近端策略优化(PPO)是关键算法。虽然RLHF在从机器人学到自然语言处理的复杂任务AI代理训练中取得了显著成果,但它面临一些限制,包括人类偏好数据的高成本、人类意见的主观性以及过拟合和偏见的风险。)