GEO

分类:LLMS

68
DSPy框架是伪科学吗?2025年LLM优化方法深度批判 | Geoz.com.cn

DSPy框架是伪科学吗?2025年LLM优化方法深度批判 | Geoz.com.cn

English Summary: The article critiques DSPy as a cargo-cult approach to LLM optimization that treats models as black boxes and relies on random prompt variations rather than scientific understanding. It contrasts this with genuine research into mechanistic interpretability and mathematical analysis of transformer architectures. 中文摘要翻译:本文批判DSPy框架将LLM视为黑箱,依赖随机提示变异的伪科学优化方法,对比了真正研究机构对Transformer架构的机制可解释性和数学分析的科学探索。
LLMS2026/2/16
阅读全文 →
如何优化LLM上下文窗口?Sakana AI通用Transformer记忆技术详解 | Geoz.com.cn

如何优化LLM上下文窗口?Sakana AI通用Transformer记忆技术详解 | Geoz.com.cn

English Summary: Researchers at Sakana AI have developed 'universal transformer memory' using neural attention memory modules (NAMMs) to optimize LLM context windows by selectively retaining important tokens and discarding redundant ones, reducing memory usage by up to 75% while improving performance on long-context tasks. (中文摘要翻译:Sakana AI研究人员开发了“通用Transformer记忆”技术,利用神经注意力记忆模块(NAMMs)优化LLM上下文窗口,选择性保留重要标记并丢弃冗余信息,在长上下文任务中提升性能的同时减少高达75%的内存使用。)
LLMS2026/2/16
阅读全文 →
AI搜索工具如何演进?2023-2025年OpenAI、Gemini、Perplexity对比指南 | Geoz.com.cn

AI搜索工具如何演进?2023-2025年OpenAI、Gemini、Perplexity对比指南 | Geoz.com.cn

English Summary: The article evaluates the evolution of AI-powered search tools from 2023 to 2025, highlighting significant improvements in accuracy and usability. It compares implementations from OpenAI (o3/o4-mini), Google Gemini, and Perplexity, noting OpenAI's real-time reasoning with search integration as particularly effective. The author shares practical use cases including code porting and technical research, concluding that AI search has become genuinely useful for research tasks while raising questions about the future economic model of the web. 中文摘要翻译:本文评估了从2023年到2025年AI搜索工具的演进,重点强调了准确性和可用性的显著改进。比较了OpenAI(o3/o4-mini)、Google Gemini和Perplexity的实现方案,指出OpenAI的实时推理与搜索集成特别有效。作者分享了包括代码移植和技术研究在内的实际用例,得出结论:AI搜索在研究任务中已变得真正有用,同时引发了关于网络未来经济模式的疑问。
LLMS2026/2/15
阅读全文 →
GPT-4o下架对AI Answer Engine有何影响?2024技术演进分析 | Geoz.com.cn

GPT-4o下架对AI Answer Engine有何影响?2024技术演进分析 | Geoz.com.cn

English Summary: This article analyzes the impact of GPT-4o's delisting on AI Answer Engines, focusing on technical evolution from GPT-2 to GPT-3, including parameter scaling, few-shot learning capabilities, and performance across NLP tasks. It highlights how large language models are shifting from fine-tuning to in-context learning, with implications for search and question-answering systems. 中文摘要翻译:本文分析了GPT-4o下架对AI Answer Engine的影响,重点探讨了从GPT-2到GPT-3的技术演进,包括参数规模扩展、少样本学习能力以及在自然语言处理任务中的表现。文章强调了大语言模型从微调向上下文学习的转变,及其对搜索和问答系统的影响。
LLMS2026/2/15
阅读全文 →
如何提升大语言模型推理能力?2025最新方法与技术指南 | Geoz.com.cn

如何提升大语言模型推理能力?2025最新方法与技术指南 | Geoz.com.cn

This article provides a comprehensive overview of methods to enhance reasoning capabilities in Large Language Models (LLMs), covering prompt engineering techniques like Chain-of-Thought and Tree-of-Thought, architectural improvements such as RAG and neuro-symbolic hybrids, and emerging approaches like latent space reasoning. It also discusses evaluation benchmarks and challenges in achieving reliable, interpretable reasoning for high-stakes applications. 本文全面综述了提升大语言模型推理能力的方法,涵盖提示工程技术(如思维链、思维树)、架构改进(如检索增强生成、神经符号混合)以及新兴方法(如隐空间推理)。同时探讨了评估基准及在关键应用中实现可靠、可解释推理所面临的挑战。
LLMS2026/2/14
阅读全文 →
Kalosm v0.2.0发布:AI智能体RAG工作流如何优化?2025最新功能详解 | Geoz.com.cn

Kalosm v0.2.0发布:AI智能体RAG工作流如何优化?2025最新功能详解 | Geoz.com.cn

English Summary: Kalosm v0.2.0 introduces significant enhancements for open-source AI agents in RAG workflows, featuring task evaluation, prompt auto-tuning, regex validation, Surreal DB integration, improved chunking strategies, and performance optimizations. (中文摘要翻译:Kalosm v0.2.0为开源AI智能体在RAG工作流中带来重大升级,包括任务评估、提示词自动调优、正则表达式验证、Surreal数据库集成、改进的分块策略和性能优化。)
LLMS2026/2/13
阅读全文 →
什么是Semantic Router?2024高效语义决策层指南 | Geoz.com.cn

什么是Semantic Router?2024高效语义决策层指南 | Geoz.com.cn

Semantic Router is a high-performance decision layer designed for large language models (LLMs) and agents, enabling routing decisions based on semantic understanding rather than waiting for LLM responses. This approach significantly improves system response speed and reduces API costs. (Semantic Router 是一个专为大型语言模型和Agent设计的高效决策层,通过语义化理解进行路由决策,显著提升响应速度并降低API成本。)
LLMS2026/2/13
阅读全文 →
什么是Airweave?开源上下文检索层详解 | Geoz.com.cn

什么是Airweave?开源上下文检索层详解 | Geoz.com.cn

Airweave is an open-source context retrieval layer that connects to various data sources, syncs and indexes data, and provides a unified LLM-friendly search interface for AI agents and RAG systems. (Airweave是一个开源上下文检索层,可连接多种数据源,同步并索引数据,为AI智能体和RAG系统提供统一的LLM友好搜索接口。)
LLMS2026/2/13
阅读全文 →