GEO

分类:LLMS

65
LangExtract是什么?Python库利用大语言模型提取结构化信息 | Geoz.com.cn

LangExtract是什么?Python库利用大语言模型提取结构化信息 | Geoz.com.cn

LangExtract is a Python library that leverages large language models (LLMs) to extract structured information from unstructured text documents, featuring precise source mapping, customizable extraction schemas, and support for multiple model providers. (LangExtract 是一个 Python 库,利用大语言模型从非结构化文本文档中提取结构化信息,具备精确的源文本映射、可定制的提取模式以及多模型提供商支持。)
LLMS2026/2/12
阅读全文 →
如何从非结构化文本提取结构化信息?LangExtract库2026指南 | Geoz.com.cn

如何从非结构化文本提取结构化信息?LangExtract库2026指南 | Geoz.com.cn

LangExtract is a Python library that leverages Large Language Models (LLMs) to extract structured information from unstructured text documents through user-defined instructions and few-shot examples. It features precise source grounding, reliable structured outputs, optimized long document processing, interactive visualization, and flexible LLM support across cloud and local models. LangExtract adapts to various domains without requiring model fine-tuning, making it suitable for applications ranging from literary analysis to clinical data extraction. LangExtract是一个基于大型语言模型(LLM)的Python库,通过用户定义的指令和少量示例从非结构化文本中提取结构化信息。它具有精确的源文本定位、可靠的结构化输出、优化的长文档处理、交互式可视化以及灵活的LLM支持(涵盖云端和本地模型)。LangExtract无需模型微调即可适应不同领域,适用于从文学分析到临床数据提取等多种应用场景。
LLMS2026/2/9
阅读全文 →
解锁大语言模型推理能力:思维链(CoT)技术深度解析

解锁大语言模型推理能力:思维链(CoT)技术深度解析

This article provides a comprehensive analysis of Chain-of-Thought (CoT) prompting techniques that enhance reasoning capabilities in large language models. It covers the evolution from basic CoT to advanced methods like Zero-shot-CoT, Self-consistency, Least-to-Most prompting, and Fine-tune-CoT, while discussing their applications, limitations, and impact on AI development. (本文全面分析了增强大语言模型推理能力的思维链提示技术,涵盖了从基础CoT到零样本思维链、自洽性、最少到最多提示和微调思维链等高级方法的演进,同时讨论了它们的应用、局限性以及对人工智能发展的影响。)
LLMS2026/2/4
阅读全文 →
nanochat:仅需73美元,3小时训练GPT-2级别大语言模型

nanochat:仅需73美元,3小时训练GPT-2级别大语言模型

nanochat is a minimalist experimental framework for training LLMs on a single GPU node, enabling users to train a GPT-2 capability model for approximately $73 in 3 hours, with full pipeline coverage from tokenization to chat UI. (nanochat是一个极简的实验框架,可在单GPU节点上训练大语言模型,仅需约73美元和3小时即可训练出具备GPT-2能力的模型,涵盖从分词到聊天界面的完整流程。)
LLMS2026/2/4
阅读全文 →
NanoChat:Karpathy开源低成本LLM,仅需8个H100和100美元复现ChatGPT全栈架构

NanoChat:Karpathy开源低成本LLM,仅需8个H100和100美元复现ChatGPT全栈架构

NanoChat is a low-cost, open-source LLM implementation by Karpathy that replicates ChatGPT's architecture using only 8 H100 nodes and $100, enabling full-stack training and inference with innovative techniques like custom tokenizers and optimized training pipelines. (NanoChat是卡神Karpathy开发的开源低成本LLM项目,仅需8个H100节点和约100美元即可复现ChatGPT全栈架构,涵盖从训练到推理的全流程,并采用创新的分词器、优化训练管道等技术实现高效性能。)
LLMS2026/2/4
阅读全文 →
NanoChat:仅需100美元4小时,训练你自己的ChatGPT级AI模型

NanoChat:仅需100美元4小时,训练你自己的ChatGPT级AI模型

NanoChat is a comprehensive LLM training framework developed by AI expert Andrej Karpathy, enabling users to train their own ChatGPT-level models for approximately $100 in just 4 hours through an end-to-end, minimalistic codebase. (NanoChat是由AI专家Andrej Karpathy开发的完整LLM训练框架,通过端到端、最小化的代码库,让用户仅需约100美元和4小时即可训练出属于自己的ChatGPT级别模型。)
LLMS2026/2/4
阅读全文 →
llms.txt:大语言模型理解网站内容的标准入口
📌 置顶

llms.txt:大语言模型理解网站内容的标准入口

llms.txt is an open proposal by Jeremy Howard that provides a standardized, machine-readable entry point for websites to help large language models (LLMs) better understand website content during the inference phase. It differs from robots.txt by guiding LLMs to valuable information rather than restricting access, and from sitemap.xml by offering curated summaries and key links optimized for LLM context windows. The proposal includes a strict Markdown format specification, a Python toolchain for implementation, and has been adopted by projects like FastHTML, Supabase, and Vue.js. (llms.txt是由Jeremy Howard提出的开放性提案,为网站提供标准化的机器可读入口,帮助大语言模型在推理阶段更有效地理解网站内容。与robots.txt不同,它引导LLM关注有价值信息而非限制访问;与sitemap.xml不同,它提供精炼摘要和关键链接,优化LLM上下文处理。提案包含严格的Markdown格式规范、Python工具链支持,已被FastHTML、Supabase和Vue.js等项目采用。)
LLMS2026/2/4
阅读全文 →
iOS设备上运行LLaMA2-13B:基于苹果MLX框架的完整技术指南

iOS设备上运行LLaMA2-13B:基于苹果MLX框架的完整技术指南

This article provides a comprehensive technical analysis of running LLaMA2-13B on iOS devices using Apple's MLX framework, covering environment setup, model architecture, code implementation, parameter analysis, and computational requirements. (本文深入分析了在iOS设备上使用苹果MLX框架运行LLaMA2-13B的技术细节,涵盖环境搭建、模型架构、代码实现、参数分析和算力需求。)
LLMS2026/2/3
阅读全文 →
SGLang vs. vLLM:两大主流大模型推理引擎深度对比与选型指南

SGLang vs. vLLM:两大主流大模型推理引擎深度对比与选型指南

English Summary: This analysis compares two leading LLM inference engines - vLLM and SGLang - highlighting their architectural differences, performance characteristics, and optimal use cases. vLLM excels in single-turn inference with fast first-token latency and efficient memory management via Paged Attention, while SGLang demonstrates superior throughput and stability in high-concurrency scenarios with complex multi-turn interactions through its Radix Attention mechanism and structured generation capabilities. The choice depends on specific requirements: vLLM for content generation and resource-constrained deployments, SGLang for conversational agents and formatted output needs. 中文摘要翻译:本文深度对比两大主流大模型推理引擎vLLM和SGLang,解析其架构差异、性能表现和适用场景。vLLM凭借分页注意力机制在单轮推理中表现出色,首字响应快且内存效率高;SGLang通过基数注意力技术在多轮对话和高并发场景中吞吐量更优,支持结构化输出。选择建议:内容生成等单轮任务选vLLM,复杂对话和格式输出需求选SGLang。
LLMS2026/2/3
阅读全文 →