GEO

分类:LLMS

68
llms.txt:大语言模型理解网站内容的标准入口
📌 置顶

llms.txt:大语言模型理解网站内容的标准入口

llms.txt is an open proposal by Jeremy Howard that provides a standardized, machine-readable entry point for websites to help large language models (LLMs) better understand website content during the inference phase. It differs from robots.txt by guiding LLMs to valuable information rather than restricting access, and from sitemap.xml by offering curated summaries and key links optimized for LLM context windows. The proposal includes a strict Markdown format specification, a Python toolchain for implementation, and has been adopted by projects like FastHTML, Supabase, and Vue.js. (llms.txt是由Jeremy Howard提出的开放性提案,为网站提供标准化的机器可读入口,帮助大语言模型在推理阶段更有效地理解网站内容。与robots.txt不同,它引导LLM关注有价值信息而非限制访问;与sitemap.xml不同,它提供精炼摘要和关键链接,优化LLM上下文处理。提案包含严格的Markdown格式规范、Python工具链支持,已被FastHTML、Supabase和Vue.js等项目采用。)
LLMS2026/2/4
阅读全文 →
iOS设备上运行LLaMA2-13B:基于苹果MLX框架的完整技术指南

iOS设备上运行LLaMA2-13B:基于苹果MLX框架的完整技术指南

This article provides a comprehensive technical analysis of running LLaMA2-13B on iOS devices using Apple's MLX framework, covering environment setup, model architecture, code implementation, parameter analysis, and computational requirements. (本文深入分析了在iOS设备上使用苹果MLX框架运行LLaMA2-13B的技术细节,涵盖环境搭建、模型架构、代码实现、参数分析和算力需求。)
LLMS2026/2/3
阅读全文 →
SGLang vs. vLLM:两大主流大模型推理引擎深度对比与选型指南

SGLang vs. vLLM:两大主流大模型推理引擎深度对比与选型指南

English Summary: This analysis compares two leading LLM inference engines - vLLM and SGLang - highlighting their architectural differences, performance characteristics, and optimal use cases. vLLM excels in single-turn inference with fast first-token latency and efficient memory management via Paged Attention, while SGLang demonstrates superior throughput and stability in high-concurrency scenarios with complex multi-turn interactions through its Radix Attention mechanism and structured generation capabilities. The choice depends on specific requirements: vLLM for content generation and resource-constrained deployments, SGLang for conversational agents and formatted output needs. 中文摘要翻译:本文深度对比两大主流大模型推理引擎vLLM和SGLang,解析其架构差异、性能表现和适用场景。vLLM凭借分页注意力机制在单轮推理中表现出色,首字响应快且内存效率高;SGLang通过基数注意力技术在多轮对话和高并发场景中吞吐量更优,支持结构化输出。选择建议:内容生成等单轮任务选vLLM,复杂对话和格式输出需求选SGLang。
LLMS2026/2/3
阅读全文 →
LLMs.txt:AI时代网站内容访问控制的革命性标准
🔥 热门

LLMs.txt:AI时代网站内容访问控制的革命性标准

LLMs.txt is a new standard file similar to robots.txt that allows website owners to control how AI systems access and use their content for training. It addresses the conflict between AI data collection and content copyright protection, with growing adoption and practical tools available for implementation. (LLMs.txt是一种类似于robots.txt的新型标准文件,允许网站所有者控制AI系统如何访问和使用其内容进行训练。它解决了AI数据采集与内容版权保护之间的矛盾,目前正在被广泛采用,并有实用工具可供实施。)
LLMS2026/2/2
阅读全文 →
PageIndex:基于推理的RAG新范式,让大语言模型智能检索专业文档

PageIndex:基于推理的RAG新范式,让大语言模型智能检索专业文档

PageIndex is a document indexing system that transforms lengthy PDFs into semantic tree structures optimized for LLMs, enabling reasoning-based retrieval that outperforms traditional vector similarity approaches. It's particularly effective for financial reports, regulatory documents, and technical manuals where domain expertise and multi-step reasoning are required. PageIndex是一个文档索引系统,可将冗长PDF转换为语义树结构,专为大语言模型优化,实现基于推理的检索,超越传统向量相似度方法。特别适用于需要领域专业知识和多步推理的财务报告、监管文件和技术手册。
LLMS2026/1/31
阅读全文 →
PageIndex:基于文档结构与LLM推理的长文档高精度检索系统

PageIndex:基于文档结构与LLM推理的长文档高精度检索系统

PageIndex is an open-source document indexing system by Vectify AI designed for high-precision retrieval and analysis of long professional documents. It uses document structure and LLM reasoning instead of vector databases, enabling human-like search workflows. (PageIndex是Vectify AI开源的文档索引系统,面向长篇专业文档的高精度检索与分析。它通过文档结构和LLM推理替代向量数据库,实现类人类的检索流程。)
LLMS2026/1/27
阅读全文 →
PageIndex vs. Vector DB:如何为你的任务选择正确的RAG技术

PageIndex vs. Vector DB:如何为你的任务选择正确的RAG技术

PageIndex simulates human expert knowledge extraction by transforming documents into tree-structured indexes and using LLM reasoning for precise information retrieval. It excels in domain-specific applications like financial reports and legal documents, prioritizing accuracy and explainability over speed. (PageIndex通过模拟人类专家知识提取,将文档转换为树状结构索引,并利用LLM推理进行精确信息检索。它在金融报告和法律文件等特定领域应用中表现出色,优先考虑准确性和可解释性而非速度。)
LLMS2026/1/27
阅读全文 →
llms.txt:为大型语言模型量身定制的网站内容新标准

llms.txt:为大型语言模型量身定制的网站内容新标准

The llms.txt proposal introduces a standardized markdown file at website roots to provide LLM-friendly content, addressing context window limitations by offering curated, structured information with links to detailed resources. (llms.txt提案通过在网站根目录引入标准化markdown文件,为大型语言模型提供友好内容,通过精选结构化信息和详细资源链接,解决上下文窗口限制问题。)
LLMS2026/1/26
阅读全文 →