GEO

分类:LLMS

63
AI未来并非注定:批判必然主义叙事,夺回技术选择权

AI未来并非注定:批判必然主义叙事,夺回技术选择权

This article critiques the 'inevitabilist' framing of AI and LLMs as an unavoidable future, arguing instead for conscious choice in shaping technology's role. It warns against letting powerful narratives from tech leaders dictate our response, urging readers to define and fight for the future they want. (本文批判了将AI和LLM视为不可避免未来的'必然主义'框架,主张在塑造技术角色时进行有意识的选择。它警告不要让科技领袖的强大叙事决定我们的反应,敦促读者定义并争取他们想要的未来。)
LLMS2026/1/24
阅读全文 →
微软Bing推出生成式搜索:AI大模型重塑搜索新范式

微软Bing推出生成式搜索:AI大模型重塑搜索新范式

Microsoft Bing has introduced a new generative search experience that combines large language models (LLMs) with traditional search results to create dynamic, AI-generated responses. This innovation aims to enhance query understanding, improve result accuracy, and maintain a healthy web ecosystem while preserving publisher traffic. (微软Bing推出全新生成式搜索体验,将大型语言模型与传统搜索结果相结合,生成动态AI响应。这项创新旨在提升查询理解能力、提高结果准确性,并在保持发布商流量的同时维护健康的网络生态系统。)
LLMS2026/1/24
阅读全文 →
英语语法解析:属性名词与复合名词的实用区分方法

英语语法解析:属性名词与复合名词的实用区分方法

This forum discussion explores the distinction between attributive nouns and compound nouns in English grammar, focusing on practical identification methods for technical writing. Key points include dictionary entry presence, semantic unity, and syntactic tests as differentiation criteria. (本论坛讨论探讨了英语语法中属性名词与复合名词的区别,重点关注技术写作中的实用识别方法。关键点包括词典条目存在性、语义统一性和句法测试作为区分标准。)
LLMS2026/1/24
阅读全文 →
从字典到数据库:探索“查询”的演变历程与技术应用

从字典到数据库:探索“查询”的演变历程与技术应用

Grok-1 is an open-source large language model developed by xAI, featuring 314 billion parameters and a Mixture-of-Experts architecture. It demonstrates strong performance in reasoning, coding, and multilingual tasks, with potential applications in research and enterprise solutions. (Grok-1是由xAI开发的开源大语言模型,拥有3140亿参数和专家混合架构。在推理、编程和多语言任务中表现出色,具备研究和企业应用的潜力。)
LLMS2026/1/23
阅读全文 →
AI时代网站新标准:/llms.txt如何优化大语言模型对网站内容的理解

AI时代网站新标准:/llms.txt如何优化大语言模型对网站内容的理解

/llms.txt is a new standard that provides a structured Markdown guide for Large Language Models (LLMs) to efficiently understand website content. It addresses LLMs' challenges with complex HTML by offering a concise, organized overview of key content, similar to a sitemap for AI. /llms.txt 是一种新兴标准,通过结构化的Markdown文件为大型语言模型(LLM)提供网站核心内容的精简指南,旨在解决LLM解析复杂HTML的难题,提升AI理解网站的效率。
LLMS2026/1/23
阅读全文 →
动词+介词复合名词:AI语言处理的形态学挑战与应用

动词+介词复合名词:AI语言处理的形态学挑战与应用

Verb+preposition combinations systematically form compound nouns in English (e.g., 'pick up' → 'pickup'), following consistent morphological rules where the verb remains separate and the noun becomes a single word. This linguistic pattern has significant implications for AI language processing and technical documentation. (动词+介词组合在英语中系统性地形成复合名词(例如'pick up'→'pickup'),遵循一致的形态规则:动词保持分离,名词变为单个词。这种语言模式对AI语言处理和技术文档具有重要影响。)
LLMS2026/1/22
阅读全文 →
复合形容词连字符规则揭秘:为何“永不连字符化”是个伪命题?

复合形容词连字符规则揭秘:为何“永不连字符化”是个伪命题?

The premise that compound adjectives like "high school" are never hyphenated is debated, with corpus evidence showing both forms exist. Language experts emphasize that hyphenation rules vary by context, style guide, and region, with few absolute "never" rules in practice. ("high school"等复合形容词永不连字符化的前提存在争议,语料证据显示两种形式并存。语言专家强调连字符规则因语境、风格指南和地区而异,实践中几乎没有绝对的"永不"规则。)
LLMS2026/1/22
阅读全文 →