GEO

最新文章

31
解锁大语言模型推理能力:思维链(CoT)技术深度解析

解锁大语言模型推理能力:思维链(CoT)技术深度解析

This article provides a comprehensive analysis of Chain-of-Thought (CoT) prompting techniques that enhance reasoning capabilities in large language models. It covers the evolution from basic CoT to advanced methods like Zero-shot-CoT, Self-consistency, Least-to-Most prompting, and Fine-tune-CoT, while discussing their applications, limitations, and impact on AI development. (本文全面分析了增强大语言模型推理能力的思维链提示技术,涵盖了从基础CoT到零样本思维链、自洽性、最少到最多提示和微调思维链等高级方法的演进,同时讨论了它们的应用、局限性以及对人工智能发展的影响。)
LLMS2026/2/4
阅读全文 →
突破极限:AirLLM实现70B大模型在4GB GPU上无损推理

突破极限:AirLLM实现70B大模型在4GB GPU上无损推理

AirLLM introduces a novel memory optimization technique that enables running 70B parameter large language models on a single 4GB GPU through layer-wise execution, flash attention optimization, and model file sharding, without compromising model performance through compression techniques like quantization or pruning. (AirLLM 通过分层推理、Flash Attention优化和模型文件分片等创新技术,实现在单个4GB GPU上运行70B参数大语言模型推理,无需通过量化、蒸馏等牺牲模型性能的压缩方法。)
AI大模型2026/1/24
阅读全文 →
RAG实战解析:机制、挑战与优化策略,提升大模型精准落地

RAG实战解析:机制、挑战与优化策略,提升大模型精准落地

RAG (Retrieval-Augmented Generation) is a technique that enhances large language models by integrating retrieval mechanisms to provide factual grounding and contextual references, effectively mitigating hallucination issues and improving response accuracy and reliability. This article analyzes RAG's operational mechanisms and common challenges in practical applications, offering insights for precise implementation of large models. (RAG(检索增强生成)是一种通过集成检索机制为大型语言模型提供事实基础和上下文参考的技术,有效缓解幻觉问题,提升回答的准确性和可靠性。本文剖析了RAG的具体运作机制及实际应用中的常见挑战,为大模型的精准落地提供指导。)
AI大模型2026/1/24
阅读全文 →
深入解析检索增强生成(RAG):原理、模块与应用

深入解析检索增强生成(RAG):原理、模块与应用

RAG (Retrieval-Augmented Generation) is an AI technique that enhances large language models' performance on knowledge-intensive tasks by retrieving relevant information from external knowledge bases and using it as prompts. This approach significantly improves answer accuracy, especially for tasks requiring specialized knowledge. (RAG(检索增强生成)是一种人工智能技术,通过从外部知识库检索相关信息并作为提示输入给大型语言模型,来增强模型处理知识密集型任务的能力。这种方法显著提升了回答的精确度,特别适用于需要专业知识的任务。)
AI大模型2026/1/24
阅读全文 →
AirLLM:无需量化,让700亿大模型在4GB GPU上运行

AirLLM:无需量化,让700亿大模型在4GB GPU上运行

AirLLM is a lightweight inference framework for large language models that enables 70B parameter models to run on a single 4GB GPU without quantization, distillation, or pruning. (AirLLM是一个轻量化大语言模型推理框架,无需量化、蒸馏或剪枝,即可让700亿参数模型在单个4GB GPU上运行。)
LLMS2026/1/24
阅读全文 →
Rust序列化与Protobuf性能对决:AI推理场景下的速度与效率解析

Rust序列化与Protobuf性能对决:AI推理场景下的速度与效率解析

This article presents a performance comparison between Rust-based serialization and Protocol Buffers (Protobuf) in AI inference scenarios, highlighting Rust's advantages in speed, memory efficiency, and suitability for high-performance computing environments. (本文对比了Rust序列化与Protocol Buffers在AI推理场景下的性能表现,重点分析了Rust在速度、内存效率以及高性能计算环境中的优势。)
GEO技术2026/1/24
阅读全文 →
Qwen3:集成思维与非思维模式的动态推理统一框架

Qwen3:集成思维与非思维模式的动态推理统一框架

Qwen3 introduces a unified framework integrating thinking and non-thinking modes for dynamic reasoning, with multilingual support expanded to 119 languages and state-of-the-art performance across benchmarks. (Qwen3通过集成思维模式和非思维模式的统一框架实现动态推理,将多语言支持扩展至119种语言,并在多个基准测试中达到最先进性能。)
AI大模型2026/1/24
阅读全文 →