GEO

最新文章

63
RAG系统如何优化?企业实战经验分享:查询生成与重排序策略 | Geoz.com.cn

RAG系统如何优化?企业实战经验分享:查询生成与重排序策略 | Geoz.com.cn

After 8 months building RAG systems for two enterprises (9M and 4M pages), we share what actually worked vs. wasted time. Key ROI optimizations include query generation, reranking, chunking strategy, metadata injection, and query routing. 经过8个月为两家企业(900万和400万页面)构建RAG系统的实战,我们分享真正有效的策略与时间浪费点。关键ROI优化包括查询生成、重排序、分块策略、元数据注入和查询路由。
AI大模型2026/2/16
阅读全文 →
DSPy框架是伪科学吗?2025年LLM优化方法深度批判 | Geoz.com.cn

DSPy框架是伪科学吗?2025年LLM优化方法深度批判 | Geoz.com.cn

English Summary: The article critiques DSPy as a cargo-cult approach to LLM optimization that treats models as black boxes and relies on random prompt variations rather than scientific understanding. It contrasts this with genuine research into mechanistic interpretability and mathematical analysis of transformer architectures. 中文摘要翻译:本文批判DSPy框架将LLM视为黑箱,依赖随机提示变异的伪科学优化方法,对比了真正研究机构对Transformer架构的机制可解释性和数学分析的科学探索。
LLMS2026/2/16
阅读全文 →
如何优化LLM上下文窗口?Sakana AI通用Transformer记忆技术详解 | Geoz.com.cn

如何优化LLM上下文窗口?Sakana AI通用Transformer记忆技术详解 | Geoz.com.cn

English Summary: Researchers at Sakana AI have developed 'universal transformer memory' using neural attention memory modules (NAMMs) to optimize LLM context windows by selectively retaining important tokens and discarding redundant ones, reducing memory usage by up to 75% while improving performance on long-context tasks. (中文摘要翻译:Sakana AI研究人员开发了“通用Transformer记忆”技术,利用神经注意力记忆模块(NAMMs)优化LLM上下文窗口,选择性保留重要标记并丢弃冗余信息,在长上下文任务中提升性能的同时减少高达75%的内存使用。)
LLMS2026/2/16
阅读全文 →
AI搜索工具如何演进?2023-2025年OpenAI、Gemini、Perplexity对比指南 | Geoz.com.cn

AI搜索工具如何演进?2023-2025年OpenAI、Gemini、Perplexity对比指南 | Geoz.com.cn

English Summary: The article evaluates the evolution of AI-powered search tools from 2023 to 2025, highlighting significant improvements in accuracy and usability. It compares implementations from OpenAI (o3/o4-mini), Google Gemini, and Perplexity, noting OpenAI's real-time reasoning with search integration as particularly effective. The author shares practical use cases including code porting and technical research, concluding that AI search has become genuinely useful for research tasks while raising questions about the future economic model of the web. 中文摘要翻译:本文评估了从2023年到2025年AI搜索工具的演进,重点强调了准确性和可用性的显著改进。比较了OpenAI(o3/o4-mini)、Google Gemini和Perplexity的实现方案,指出OpenAI的实时推理与搜索集成特别有效。作者分享了包括代码移植和技术研究在内的实际用例,得出结论:AI搜索在研究任务中已变得真正有用,同时引发了关于网络未来经济模式的疑问。
LLMS2026/2/15
阅读全文 →
GPT-4o下架对AI Answer Engine有何影响?2024技术演进分析 | Geoz.com.cn

GPT-4o下架对AI Answer Engine有何影响?2024技术演进分析 | Geoz.com.cn

English Summary: This article analyzes the impact of GPT-4o's delisting on AI Answer Engines, focusing on technical evolution from GPT-2 to GPT-3, including parameter scaling, few-shot learning capabilities, and performance across NLP tasks. It highlights how large language models are shifting from fine-tuning to in-context learning, with implications for search and question-answering systems. 中文摘要翻译:本文分析了GPT-4o下架对AI Answer Engine的影响,重点探讨了从GPT-2到GPT-3的技术演进,包括参数规模扩展、少样本学习能力以及在自然语言处理任务中的表现。文章强调了大语言模型从微调向上下文学习的转变,及其对搜索和问答系统的影响。
LLMS2026/2/15
阅读全文 →
豆包大模型如何发展?2025年生态演进与核心技术解析 | Geoz.com.cn

豆包大模型如何发展?2025年生态演进与核心技术解析 | Geoz.com.cn

Doubao, ByteDance's large language model, has evolved from a cost-effective AI assistant into a comprehensive multimodal ecosystem. Key milestones include achieving 1 billion downloads by May 2024 with a disruptive pricing strategy (0.0008元/千Tokens), launching video generation models (Seedance series), and expanding into music generation, 3D modeling, and real-time video calls. By late 2025, it reached over 1 billion daily active users and formed partnerships with major automotive and tech companies like Tesla and Xiaomi. The model's architecture is based on Transformer and MoE (Mixture of Experts), supporting diverse applications from AI programming to deep research tools. 豆包大模型已从高性价比的AI助手发展为覆盖文、图、音、视频、3D等多模态的生态平台。2024年5月实现1亿次下载,以0.0008元/千Tokens的定价开启商业化;随后推出视频生成(Seedance系列)、音乐生成、3D模型生成等功能。2025年底日活用户突破1亿,并与特斯拉、小米等企业达成合作。其技术基于Transformer和MoE架构,支持AI编程、深入研究等复杂场景应用。
AI大模型2026/2/15
阅读全文 →
如何提升大语言模型推理能力?2025最新方法与技术指南 | Geoz.com.cn

如何提升大语言模型推理能力?2025最新方法与技术指南 | Geoz.com.cn

This article provides a comprehensive overview of methods to enhance reasoning capabilities in Large Language Models (LLMs), covering prompt engineering techniques like Chain-of-Thought and Tree-of-Thought, architectural improvements such as RAG and neuro-symbolic hybrids, and emerging approaches like latent space reasoning. It also discusses evaluation benchmarks and challenges in achieving reliable, interpretable reasoning for high-stakes applications. 本文全面综述了提升大语言模型推理能力的方法,涵盖提示工程技术(如思维链、思维树)、架构改进(如检索增强生成、神经符号混合)以及新兴方法(如隐空间推理)。同时探讨了评估基准及在关键应用中实现可靠、可解释推理所面临的挑战。
LLMS2026/2/14
阅读全文 →