LEANN AI Framework: A storage-efficient vector search index using dynamic embedding recalculation and compressed graph indices. (LEANN AI框架:采用动态嵌入重算与压缩图索引的高存储效率向量搜索方案。)
LEANN: Embedded vector DB framework for local RAG. On-demand computation & graph-based storage cut 97% space vs. traditional DBs. (LEANN:用于本地RAG的嵌入式向量数据库框架。按需计算和基于图的存储相比传统数据库节省97%空间。)
LEANN AI Framework drastically cuts vector index storage to <5% of original size, enabling 50x compression for efficient similarity search. LEANN AI 框架将向量索引存储降至原体积<5%,实现50倍压缩,提升相似性搜索效率。
Large AI models: Transformer-based, billions of parameters, self-supervised learning, fine-tunable for tasks. 大型AI模型:基于Transformer,数十亿参数,自监督学习,可针对任务微调。