GEO

最新文章

240
阿里云通义千问Qwen3系列模型:架构、特性与部署指南

阿里云通义千问Qwen3系列模型:架构、特性与部署指南

The Qwen3 series, released by Alibaba Cloud's Tongyi Qianwen team, features eight models ranging from 0.6B to 235B parameters, utilizing both MoE (Mixture of Experts) and Dense architectures. It supports 128K token context length and 119 languages, with innovative thinking/non-thinking modes for optimized task performance. The series balances high performance in coding, mathematics, and general tasks with efficient inference, making it suitable for diverse applications from edge devices to enterprise solutions. (阿里云通义千问团队发布的Qwen3系列包含八款模型,参数规模从0.6B到235B,采用MoE和密集架构。支持128K token上下文长度和119种语言,首创思考/非思考模式优化任务性能。该系列在编码、数学和通用任务上表现卓越,同时实现高效推理,适用于从边缘设备到企业级应用的多种场景。)
AI大模型2026/1/24
阅读全文 →
Qwen3:集成思维与非思维模式的动态推理统一框架

Qwen3:集成思维与非思维模式的动态推理统一框架

Qwen3 introduces a unified framework integrating thinking and non-thinking modes for dynamic reasoning, with multilingual support expanded to 119 languages and state-of-the-art performance across benchmarks. (Qwen3通过集成思维模式和非思维模式的统一框架实现动态推理,将多语言支持扩展至119种语言,并在多个基准测试中达到最先进性能。)
AI大模型2026/1/24
阅读全文 →
Qwen3-2507:开源大语言模型前沿技术解析与部署指南

Qwen3-2507:开源大语言模型前沿技术解析与部署指南

Qwen3-TTS is an open-source voice cloning technology that enables high-quality speech synthesis and voice replication. This article provides a technical overview of its implementation, including model architecture, training methodologies, and practical deployment considerations for developers and researchers. (Qwen3-TTS是一种开源语音克隆技术,能够实现高质量的语音合成和声音复制。本文提供了其实现的技术概述,包括模型架构、训练方法以及开发者和研究人员的实际部署考虑。)
AI大模型2026/1/24
阅读全文 →
Qwen3重磅发布:开源大模型新标杆,双思考模式引领AI新浪潮

Qwen3重磅发布:开源大模型新标杆,双思考模式引领AI新浪潮

Qwen3 is the latest open-source large language model series featuring dual thinking modes (reasoning vs. fast response), support for 119 languages, and enhanced agent capabilities. It includes both dense and MoE architectures with models ranging from 0.6B to 235B parameters, all released under Apache 2.0 license. (Qwen3是最新开源的大型语言模型系列,具备双思考模式(推理与快速响应)、支持119种语言和增强的Agent能力。包含密集和MoE架构,模型参数从0.6B到235B不等,均以Apache 2.0许可证开源。)
AI大模型2026/1/24
阅读全文 →
学术论文LLM生成内容质量评估:技术标准与伦理指南

学术论文LLM生成内容质量评估:技术标准与伦理指南

English Summary. This article provides a comprehensive overview of quality assessment standards for LLM-generated content in academic papers, focusing on technical evaluation criteria, ethical considerations, and practical implementation guidelines for researchers and editors. (中文摘要翻译:本文全面概述了学术论文中LLM生成内容的质量评估标准,重点关注技术评估标准、伦理考量以及研究人员和编辑的实际实施指南。)
LLMS2026/1/24
阅读全文 →
仅需250份恶意文档即可攻破大语言模型:数据投毒攻击门槛远低于预期

仅需250份恶意文档即可攻破大语言模型:数据投毒攻击门槛远低于预期

A joint study reveals that poisoning large language models requires only a fixed number of malicious documents (as few as 250), regardless of model size or training data volume, challenging previous assumptions about attack feasibility. (一项联合研究表明,无论模型规模或训练数据量如何,仅需固定数量的恶意文档(少至250份)即可对大语言模型进行数据投毒攻击,这挑战了先前关于攻击可行性的假设。)
LLMS2026/1/24
阅读全文 →
AI未来并非注定:批判必然主义叙事,夺回技术选择权

AI未来并非注定:批判必然主义叙事,夺回技术选择权

This article critiques the 'inevitabilist' framing of AI and LLMs as an unavoidable future, arguing instead for conscious choice in shaping technology's role. It warns against letting powerful narratives from tech leaders dictate our response, urging readers to define and fight for the future they want. (本文批判了将AI和LLM视为不可避免未来的'必然主义'框架,主张在塑造技术角色时进行有意识的选择。它警告不要让科技领袖的强大叙事决定我们的反应,敦促读者定义并争取他们想要的未来。)
LLMS2026/1/24
阅读全文 →
GPTZero技术解析:如何利用困惑度与突发性精准检测AI生成文本

GPTZero技术解析:如何利用困惑度与突发性精准检测AI生成文本

English Summary: This article explains GPTZero's technical approach to detecting AI-generated text, focusing on its use of perplexity and burstiness metrics to distinguish human writing from AI output, while also comparing it with other detection tools like OpenAI's classifier and Originality.AI. (中文摘要翻译:本文详细解析了GPTZero检测AI生成文本的技术原理,重点介绍了其利用困惑度和突发性指标来区分人类写作与AI输出的方法,同时对比了OpenAI分类器、Originality.AI等其他检测工具。)
AI大模型2026/1/24
阅读全文 →