GEO

最新文章

504
UltraRAG:基于MCP架构的低代码可视化RAG开发框架

UltraRAG:基于MCP架构的低代码可视化RAG开发框架

UltraRAG is a low-code RAG development framework based on Model Context Protocol (MCP) architecture, emphasizing visual orchestration and reproducible evaluation workflows. It modularizes core components like retrieval, generation, and evaluation as independent MCP Servers, providing transparent and repeatable development processes through interactive UI and pipeline builders. (UltraRAG是一个基于模型上下文协议(MCP)架构的低代码检索增强生成(RAG)开发框架,强调可视化编排与可复现的评估流程。它将检索、生成与评估等核心组件封装为独立的MCP服务器,通过交互式UI和流水线构建器提供透明且可重复的研发流程。)
AI大模型2026/1/25
阅读全文 →
UltraRAG 2.0:基于MCP架构的开源框架,用YAML配置简化复杂RAG系统开发

UltraRAG 2.0:基于MCP架构的开源框架,用YAML配置简化复杂RAG系统开发

English Summary: UltraRAG 2.0 is an open-source framework based on Model Context Protocol (MCP) architecture that simplifies complex RAG system development through YAML configuration, enabling low-code implementation of multi-step reasoning, dynamic retrieval, and modular workflows. It addresses engineering bottlenecks in research and production RAG applications. 中文摘要翻译: UltraRAG 2.0是基于Model Context Protocol(MCP)架构的开源框架,通过YAML配置文件简化复杂RAG系统开发,实现低代码构建多轮推理、动态检索和模块化工作流。它解决了研究和生产环境中RAG应用的工程瓶颈问题。
AI大模型2026/1/25
阅读全文 →
AirLLM:4GB GPU上运行700亿参数大模型的开源框架

AirLLM:4GB GPU上运行700亿参数大模型的开源框架

AirLLM is an open-source framework that enables running 70B-parameter large language models on a single 4GB GPU through layer-wise offloading and memory optimization techniques, democratizing access to cutting-edge AI without traditional compression methods. (AirLLM是一个开源框架,通过分层卸载和内存优化技术,使700亿参数的大语言模型能够在单个4GB GPU上运行,无需传统压缩方法即可实现前沿AI的普及化访问。)
AI大模型2026/1/25
阅读全文 →
从SEO到GEO:AI时代数字营销的范式革命与战略指南

从SEO到GEO:AI时代数字营销的范式革命与战略指南

Generative Engine Optimization (GEO) is a new digital marketing paradigm emerging from generative AI and large language models (LLMs). Unlike traditional Search Engine Optimization (SEO), which focuses on ranking and traffic through keywords and links, GEO aims to make brands and content directly referenced in AI-generated answers by prioritizing semantic understanding, authority building, and structured content. This report systematically explains GEO's core concepts, contrasts it with SEO across goals, mechanisms, content strategies, and metrics, and provides actionable guidance for technical professionals to adapt to the AI-driven search era. (生成式引擎优化(GEO)是由生成式AI和大语言模型(LLMs)兴起催生的数字营销新范式。与专注于通过关键词和链接获取排名和流量的传统搜索引擎优化(SEO)不同,GEO旨在通过优先考虑语义理解、权威性构建和结构化内容,使品牌和内容在AI生成的答案中被直接引用。本报告系统阐述GEO核心概念,从目标、机制、内容策略和指标等多维度对比GEO与SEO,并为技术专业人士适应AI驱动搜索时代提供行动指南。)
GEO2026/1/25
阅读全文 →
GEO:AI时代流量新战场,62只概念股引爆A股投资机遇

GEO:AI时代流量新战场,62只概念股引爆A股投资机遇

GEO (Generative Engine Optimization) represents the 'new SEO of the AI era,' enabling brands to embed content directly into AI-generated answers for 'clickless customer acquisition.' This technology is reshaping traffic distribution and creating investment opportunities in China's A-share market, with 62 GEO concept stocks spanning media, technology, and retail sectors. (GEO(生成式引擎优化)是“AI时代的新SEO”,通过让品牌内容直接嵌入AI生成的答案中,实现“无需点击即获客”。这项技术正在重塑流量分配格局,并在中国A股市场催生了62只概念股,覆盖传媒、科技和零售等行业,带来新的投资机遇。)
GEO2026/1/25
阅读全文 →
突破极限:AirLLM实现70B大模型在4GB GPU上无损推理

突破极限:AirLLM实现70B大模型在4GB GPU上无损推理

AirLLM introduces a novel memory optimization technique that enables running 70B parameter large language models on a single 4GB GPU through layer-wise execution, flash attention optimization, and model file sharding, without compromising model performance through compression techniques like quantization or pruning. (AirLLM 通过分层推理、Flash Attention优化和模型文件分片等创新技术,实现在单个4GB GPU上运行70B参数大语言模型推理,无需通过量化、蒸馏等牺牲模型性能的压缩方法。)
AI大模型2026/1/24
阅读全文 →
从聊天机器人到智能执行者:揭秘AI智能体的自动化革命

从聊天机器人到智能执行者:揭秘AI智能体的自动化革命

AI Agents represent a paradigm shift from passive text generation to active task execution, combining LLMs with planning, tool use, and memory to automate complex workflows. This article explores their architecture, working principles, and practical applications in content creation, highlighting the transition from chatbots to intelligent executors. AI智能体标志着从被动文本生成到主动任务执行的范式转变,它结合了大语言模型、规划、工具使用和记忆功能,能够自动化复杂工作流程。本文探讨了其在内容创作领域的架构、工作原理和实际应用,强调了从聊天机器人到智能执行者的转变。
AI大模型2026/1/24
阅读全文 →
RAG实战解析:机制、挑战与优化策略,提升大模型精准落地

RAG实战解析:机制、挑战与优化策略,提升大模型精准落地

RAG (Retrieval-Augmented Generation) is a technique that enhances large language models by integrating retrieval mechanisms to provide factual grounding and contextual references, effectively mitigating hallucination issues and improving response accuracy and reliability. This article analyzes RAG's operational mechanisms and common challenges in practical applications, offering insights for precise implementation of large models. (RAG(检索增强生成)是一种通过集成检索机制为大型语言模型提供事实基础和上下文参考的技术,有效缓解幻觉问题,提升回答的准确性和可靠性。本文剖析了RAG的具体运作机制及实际应用中的常见挑战,为大模型的精准落地提供指导。)
AI大模型2026/1/24
阅读全文 →
Graph RAG:知识图谱如何突破大语言模型的局限

Graph RAG:知识图谱如何突破大语言模型的局限

Graph RAG (Retrieval Augmented Generation) enhances LLM performance by integrating knowledge graphs with retrieval mechanisms, addressing limitations like domain-specific knowledge gaps and real-time information access. It combines entity extraction, subgraph retrieval, and LLM synthesis to provide accurate, context-aware responses. Graph RAG(检索增强生成)通过将知识图谱与检索机制结合,提升大语言模型性能,解决领域知识不足和实时信息获取等局限。它结合实体提取、子图检索和LLM合成,提供准确、上下文感知的响应。
LLMS2026/1/24
阅读全文 →