GEO

最新文章

502
UltraRAG 2.0:基于MCP架构的低代码高性能RAG框架,让复杂推理系统开发效率提升20倍

UltraRAG 2.0:基于MCP架构的低代码高性能RAG框架,让复杂推理系统开发效率提升20倍

UltraRAG 2.0 is a novel RAG framework built on the Model Context Protocol (MCP) architecture, designed to drastically reduce the engineering overhead of implementing complex multi-stage reasoning systems. It achieves this through componentized encapsulation and YAML-based workflow definitions, enabling developers to build advanced systems with as little as 5% of the code required by traditional frameworks, while maintaining high performance and supporting features like dynamic retrieval and conditional logic. UltraRAG 2.0 是一个基于模型上下文协议(MCP)架构设计的新型RAG框架,旨在显著降低构建复杂多阶段推理系统的工程成本。它通过组件化封装和YAML流程定义,使开发者能够用传统框架所需代码量的5%即可构建高级系统,同时保持高性能,并支持动态检索、条件判断等功能。
AI大模型2026/1/24
阅读全文 →
OpenBMB:清华大学开源社区如何推动大语言模型高效计算与参数微调

OpenBMB:清华大学开源社区如何推动大语言模型高效计算与参数微调

OpenBMB is an open-source community and toolset initiated by Tsinghua University since 2018, focused on building efficient computational tools for large-scale pre-trained language models. Its core contribution includes parameter-efficient fine-tuning methods, and it has released significant projects like UltraRAG 2.1, UltraEval-Audio v1.1.0, and the 4-billion-parameter AgentCPM-Explore model, which demonstrate strong performance in benchmarks. (OpenBMB是清华大学自2018年起支持发起的开源社区与工具集,致力于构建大规模预训练语言模型的高效计算工具。其核心贡献包括参数高效微调方法,并发布了UltraRAG 2.1、UltraEval-Audio v1.1.0和40亿参数的AgentCPM-Explore模型等重要项目,在多项基准测试中表现出色。)
AI大模型2026/1/24
阅读全文 →
UltraRAG UI实战指南:构建标准化检索增强生成(RAG)流程

UltraRAG UI实战指南:构建标准化检索增强生成(RAG)流程

This article provides a comprehensive guide to implementing Retrieval-Augmented Generation (RAG) using UltraRAG UI, detailing the standardized pipeline structure, configuration parameters, and practical demonstration steps. (本文全面介绍了使用UltraRAG UI实现检索增强生成(RAG)的实战指南,详细阐述了标准化流程结构、配置参数及效果演示步骤。)
AI大模型2026/1/24
阅读全文 →
LEANN:将笔记本变为本地AI与RAG平台,存储节省97%且无精度损失

LEANN:将笔记本变为本地AI与RAG平台,存储节省97%且无精度损失

LEANN is an innovative vector database and personal AI platform that transforms your notebook into a powerful RAG system, supporting local semantic retrieval of millions of documents with 97% storage savings and no precision loss. (LEANN是一款创新的向量数据库与个人AI平台,可将笔记本变为强大的RAG系统,支持本地语义检索数百万文档,存储节省97%且无精度损失。)
AI大模型2026/1/24
阅读全文 →
LLMs.txt生成器API弃用指南:从网站内容生成LLM训练文件的工具迁移路径

LLMs.txt生成器API弃用指南:从网站内容生成LLM训练文件的工具迁移路径

This API generates consolidated text files from websites specifically for LLM training and inference. The service is powered by Firecrawl but will be deprecated after June 30, 2025 in favor of main endpoints. (此API可从网站生成整合文本文件,专为LLM训练和推理设计。该服务由Firecrawl提供支持,但将于2025年6月30日后弃用,建议使用主要端点替代。)
LLMS2026/1/24
阅读全文 →
llms.txt标准兴起:揭秘AI透明化的新规范

llms.txt标准兴起:揭秘AI透明化的新规范

A curated directory showcasing companies and products adopting the llms.txt standard across various sectors like AI, finance, developer tools, and websites, with token counts indicating implementation scale. (中文摘要翻译:一份精选目录,展示在AI、金融、开发者工具和网站等多个领域采用llms.txt标准的企业与产品,token数量反映了实施规模。)
LLMS2026/1/24
阅读全文 →
深度学习新突破:基于Transformer的光场视图生成模型

深度学习新突破:基于Transformer的光场视图生成模型

This article explores a novel deep learning model for generating light field views, detailing its neural architecture, training methodology, and applications in computational photography and VR. The model leverages transformer-based attention mechanisms to synthesize high-fidelity multi-view images from sparse inputs, addressing key challenges in angular consistency and computational efficiency. (本文探讨了一种用于生成光场视图的新型深度学习模型,详细介绍了其神经架构、训练方法以及在计算摄影和VR中的应用。该模型利用基于Transformer的注意力机制,从稀疏输入中合成高保真多视图图像,解决了角度一致性和计算效率方面的关键挑战。)
AI大模型2026/1/24
阅读全文 →