GEO

最新文章

394
Deep Research是什么?2024开源多跳推理框架指南 | Geoz.com.cn

Deep Research是什么?2024开源多跳推理框架指南 | Geoz.com.cn

Deep Research is an open-source library for conducting deep, multi-hop research with reasoning capabilities, performing focused web searches with recursive exploration to provide comprehensive, evidence-backed answers to complex questions. (Deep Research是一个开源库,具备深度多跳推理能力,通过递归探索执行聚焦网络搜索,为复杂问题提供全面、有证据支持的答案。)
AI大模型2026/2/13
阅读全文 →
Instill Core是什么?一站式AI平台2024本地部署指南 | Geoz.com.cn

Instill Core是什么?一站式AI平台2024本地部署指南 | Geoz.com.cn

Instill Core is an end-to-end AI platform that simplifies infrastructure management by providing ETL processing, AI-readiness, open-source LLM hosting, and RAG capabilities in one unified solution. It enables technical professionals to build versatile AI applications locally with minimal setup. (Instill Core是一个端到端的AI平台,通过在一个统一解决方案中提供ETL处理、AI就绪、开源LLM托管和RAG功能,简化了基础设施管理。它使技术专业人员能够以最少的设置本地构建多功能AI应用。)
AI大模型2026/2/13
阅读全文 →
Neum AI是什么?2024年RAG数据平台详解 | Geoz.com.cn

Neum AI是什么?2024年RAG数据平台详解 | Geoz.com.cn

Neum AI is a comprehensive data platform that enables developers to implement Retrieval Augmented Generation (RAG) for large language models by extracting data from various sources, converting it into vector embeddings, and storing them in vector databases for similarity search. It offers scalable architecture, built-in connectors, real-time synchronization, and customizable preprocessing to streamline RAG implementation. (Neum AI是一个全面的数据平台,帮助开发者通过检索增强生成(RAG)技术为大语言模型提供上下文支持。它从多种数据源提取数据,将其转换为向量嵌入并存储到向量数据库中进行相似性搜索。该平台提供可扩展的架构、内置连接器、实时同步和可定制的预处理功能,简化RAG实施流程。)
AI大模型2026/2/13
阅读全文 →
什么是Airweave?开源上下文检索层详解 | Geoz.com.cn

什么是Airweave?开源上下文检索层详解 | Geoz.com.cn

Airweave is an open-source context retrieval layer that connects to various data sources, syncs and indexes data, and provides a unified LLM-friendly search interface for AI agents and RAG systems. (Airweave是一个开源上下文检索层,可连接多种数据源,同步并索引数据,为AI智能体和RAG系统提供统一的LLM友好搜索接口。)
LLMS2026/2/13
阅读全文 →
如何构建类型安全的LLM代理?llm-exe模块化TypeScript库指南 | Geoz.com.cn

如何构建类型安全的LLM代理?llm-exe模块化TypeScript库指南 | Geoz.com.cn

English Summary: llm-exe is a modular TypeScript library for building type-safe LLM agents and AI functions with full TypeScript support, provider-agnostic architecture, and production-ready features like automatic retries and schema validation. It enables developers to create composable executors, powerful parsers, and autonomous agents while allowing one-line provider switching between OpenAI, Anthropic, Google, xAI, and others. 中文摘要翻译:llm-exe是一个模块化TypeScript库,用于构建类型安全的LLM代理和AI函数,具有完整的TypeScript支持、供应商无关的架构以及生产就绪功能(如自动重试和模式验证)。它使开发人员能够创建可组合的执行器、强大的解析器和自主代理,同时允许在OpenAI、Anthropic、Google、xAI等供应商之间进行单行切换。
LLMS2026/2/13
阅读全文 →
AI助手如何实现持久记忆?2026本地化记忆系统SuperLocalMemory V2详解 | Geoz.com.cn

AI助手如何实现持久记忆?2026本地化记忆系统SuperLocalMemory V2详解 | Geoz.com.cn

SuperLocalMemory V2 is a 100% local, zero-setup memory system for AI assistants that enables persistent context across sessions through real-time coordination, hybrid search, and knowledge graph architecture. (SuperLocalMemory V2是一个完全本地化、零配置的AI助手记忆系统,通过实时协调、混合搜索和知识图谱架构实现跨会话的持久上下文记忆。)
AI大模型2026/2/13
阅读全文 →
LLM如何执行黑盒优化?2024最新技术解析与实现指南 | Geoz.com.cn

LLM如何执行黑盒优化?2024最新技术解析与实现指南 | Geoz.com.cn

LLM Optimize is a proof-of-concept library that enables large language models (LLMs) like GPT-4 to perform blackbox optimization through natural language instructions, allowing optimization of arbitrary text/code strings with explanatory reasoning at each step. (LLM Optimize是一个概念验证库,通过自然语言指令让大语言模型(如GPT-4)执行黑盒优化,能够优化任意文本/代码字符串,并在每个步骤提供解释性推理。)
LLMS2026/2/13
阅读全文 →
Graphiti是什么?2025实时知识图谱框架详解 | Geoz.com.cn

Graphiti是什么?2025实时知识图谱框架详解 | Geoz.com.cn

Graphiti is an open-source framework for building temporally-aware knowledge graphs specifically designed for AI agents in dynamic environments. It enables real-time incremental updates, bi-temporal data modeling, and hybrid retrieval methods, addressing limitations of traditional RAG approaches for frequently changing data. (Graphiti是一个专为动态环境中AI智能体设计的开源框架,用于构建具有时间感知能力的知识图谱。它支持实时增量更新、双时间数据建模和混合检索方法,解决了传统RAG方法在处理频繁变化数据时的局限性。)
AI大模型2026/2/13
阅读全文 →