GEO

最新文章

114
RAG实战解析:机制、挑战与优化策略,提升大模型精准落地

RAG实战解析:机制、挑战与优化策略,提升大模型精准落地

RAG (Retrieval-Augmented Generation) is a technique that enhances large language models by integrating retrieval mechanisms to provide factual grounding and contextual references, effectively mitigating hallucination issues and improving response accuracy and reliability. This article analyzes RAG's operational mechanisms and common challenges in practical applications, offering insights for precise implementation of large models. (RAG(检索增强生成)是一种通过集成检索机制为大型语言模型提供事实基础和上下文参考的技术,有效缓解幻觉问题,提升回答的准确性和可靠性。本文剖析了RAG的具体运作机制及实际应用中的常见挑战,为大模型的精准落地提供指导。)
AI大模型2026/1/24
阅读全文 →
Graph RAG:知识图谱如何突破大语言模型的局限

Graph RAG:知识图谱如何突破大语言模型的局限

Graph RAG (Retrieval Augmented Generation) enhances LLM performance by integrating knowledge graphs with retrieval mechanisms, addressing limitations like domain-specific knowledge gaps and real-time information access. It combines entity extraction, subgraph retrieval, and LLM synthesis to provide accurate, context-aware responses. Graph RAG(检索增强生成)通过将知识图谱与检索机制结合,提升大语言模型性能,解决领域知识不足和实时信息获取等局限。它结合实体提取、子图检索和LLM合成,提供准确、上下文感知的响应。
LLMS2026/1/24
阅读全文 →
深入解析检索增强生成(RAG):原理、模块与应用

深入解析检索增强生成(RAG):原理、模块与应用

RAG (Retrieval-Augmented Generation) is an AI technique that enhances large language models' performance on knowledge-intensive tasks by retrieving relevant information from external knowledge bases and using it as prompts. This approach significantly improves answer accuracy, especially for tasks requiring specialized knowledge. (RAG(检索增强生成)是一种人工智能技术,通过从外部知识库检索相关信息并作为提示输入给大型语言模型,来增强模型处理知识密集型任务的能力。这种方法显著提升了回答的精确度,特别适用于需要专业知识的任务。)
AI大模型2026/1/24
阅读全文 →
4GB GPU运行Llama3 70B:AirLLM框架让高端AI触手可及

4GB GPU运行Llama3 70B:AirLLM框架让高端AI触手可及

This article demonstrates how to run the powerful Llama3 70B open-source LLM on just 4GB GPU memory using the AirLLM framework, making cutting-edge AI technology accessible to users with limited hardware resources. (本文展示了如何利用AirLLM框架,在仅4GB GPU内存的条件下运行强大的Llama3 70B开源大语言模型,使硬件资源有限的用户也能接触前沿AI技术。)
AI大模型2026/1/24
阅读全文 →
UltraRAG 2.0:基于MCP架构的低代码高性能RAG框架,让复杂推理系统开发效率提升20倍

UltraRAG 2.0:基于MCP架构的低代码高性能RAG框架,让复杂推理系统开发效率提升20倍

UltraRAG 2.0 is a novel RAG framework built on the Model Context Protocol (MCP) architecture, designed to drastically reduce the engineering overhead of implementing complex multi-stage reasoning systems. It achieves this through componentized encapsulation and YAML-based workflow definitions, enabling developers to build advanced systems with as little as 5% of the code required by traditional frameworks, while maintaining high performance and supporting features like dynamic retrieval and conditional logic. UltraRAG 2.0 是一个基于模型上下文协议(MCP)架构设计的新型RAG框架,旨在显著降低构建复杂多阶段推理系统的工程成本。它通过组件化封装和YAML流程定义,使开发者能够用传统框架所需代码量的5%即可构建高级系统,同时保持高性能,并支持动态检索、条件判断等功能。
AI大模型2026/1/24
阅读全文 →
OpenBMB:清华大学开源社区如何推动大语言模型高效计算与参数微调

OpenBMB:清华大学开源社区如何推动大语言模型高效计算与参数微调

OpenBMB is an open-source community and toolset initiated by Tsinghua University since 2018, focused on building efficient computational tools for large-scale pre-trained language models. Its core contribution includes parameter-efficient fine-tuning methods, and it has released significant projects like UltraRAG 2.1, UltraEval-Audio v1.1.0, and the 4-billion-parameter AgentCPM-Explore model, which demonstrate strong performance in benchmarks. (OpenBMB是清华大学自2018年起支持发起的开源社区与工具集,致力于构建大规模预训练语言模型的高效计算工具。其核心贡献包括参数高效微调方法,并发布了UltraRAG 2.1、UltraEval-Audio v1.1.0和40亿参数的AgentCPM-Explore模型等重要项目,在多项基准测试中表现出色。)
AI大模型2026/1/24
阅读全文 →
UltraRAG UI实战指南:构建标准化检索增强生成(RAG)流程

UltraRAG UI实战指南:构建标准化检索增强生成(RAG)流程

This article provides a comprehensive guide to implementing Retrieval-Augmented Generation (RAG) using UltraRAG UI, detailing the standardized pipeline structure, configuration parameters, and practical demonstration steps. (本文全面介绍了使用UltraRAG UI实现检索增强生成(RAG)的实战指南,详细阐述了标准化流程结构、配置参数及效果演示步骤。)
AI大模型2026/1/24
阅读全文 →
深度学习新突破:基于Transformer的光场视图生成模型

深度学习新突破:基于Transformer的光场视图生成模型

This article explores a novel deep learning model for generating light field views, detailing its neural architecture, training methodology, and applications in computational photography and VR. The model leverages transformer-based attention mechanisms to synthesize high-fidelity multi-view images from sparse inputs, addressing key challenges in angular consistency and computational efficiency. (本文探讨了一种用于生成光场视图的新型深度学习模型,详细介绍了其神经架构、训练方法以及在计算摄影和VR中的应用。该模型利用基于Transformer的注意力机制,从稀疏输入中合成高保真多视图图像,解决了角度一致性和计算效率方面的关键挑战。)
AI大模型2026/1/24
阅读全文 →
ILIAS平台AI安全漏洞深度解析:教育技术中的风险与应对

ILIAS平台AI安全漏洞深度解析:教育技术中的风险与应对

This analysis examines critical AI security vulnerabilities within the ILIAS Learning Management System, highlighting potential risks in data processing, model integrity, and access control mechanisms. The report provides technical insights for security professionals to identify, assess, and mitigate these vulnerabilities in educational technology environments. // 本分析深入探讨ILIAS学习管理系统中的关键AI安全漏洞,重点关注数据处理、模型完整性和访问控制机制中的潜在风险。报告为安全专业人员提供技术见解,帮助识别、评估和缓解教育技术环境中的这些漏洞。
AI大模型2026/1/24
阅读全文 →