GEO

最新文章

504
DeepSeek FlashMLA代码分析:揭秘未公开的MODEL1高效推理架构

DeepSeek FlashMLA代码分析:揭秘未公开的MODEL1高效推理架构

DeepSeek's FlashMLA repository reveals two distinct model architectures: V3.2 optimized for maximum performance and precision, and MODEL1 designed for efficiency and deployability with lower memory footprint and specialized long-sequence handling. (DeepSeek的FlashMLA代码库揭示了两种不同的模型架构:V3.2针对最大性能和精度优化,而MODEL1则针对效率和可部署性设计,具有更低的内存占用和专门的长序列处理能力。)
DeepSeek2026/1/23
阅读全文 →
FlashMLA:DeepSeek开源的高效MLA解码内核,专为NVIDIA Hopper GPU优化

FlashMLA:DeepSeek开源的高效MLA解码内核,专为NVIDIA Hopper GPU优化

FlashMLA is an open-source, high-performance Multi-Head Linear Attention (MLA) decoding kernel optimized for NVIDIA Hopper architecture GPUs, designed to handle variable-length sequences efficiently. It enhances memory and computational efficiency through optimized KV caching and BF16 data format support, achieving up to 3000 GB/s memory bandwidth and 580 TFLOPS computational performance on H800 SXM5 GPUs. FlashMLA is ideal for large language model (LLM) inference and natural language processing (NLP) tasks requiring efficient decoding. (FlashMLA是DeepSeek开源的高效MLA解码内核,专为NVIDIA Hopper架构GPU优化,用于处理可变长度序列。通过优化KV缓存和采用BF16数据格式,提升了内存和计算效率,在H800 SXM5 GPU上内存带宽可达3000 GB/s,计算性能可达580 TFLOPS。适用于大语言模型推理和需要高效解码的自然语言处理任务。)
DeepSeek2026/1/23
阅读全文 →
FlashMLA:突破Transformer瓶颈,下一代高效注意力机制引擎

FlashMLA:突破Transformer瓶颈,下一代高效注意力机制引擎

FlashMLA is an optimized algorithm for Multi-Head Attention that dramatically improves inference performance through streaming chunking, online normalization, and register-level pipelining, reducing memory usage and increasing speed while maintaining numerical stability. FlashMLA通过分块计算、在线归一化和寄存器级流水线等优化技术,显著提升多头注意力计算性能,在降低内存消耗的同时提高速度并保持数值稳定性。
AI大模型2026/1/23
阅读全文 →
FlashMLA:DeepSeek高性能注意力内核库,驱动V3模型实现660 TFLOPS

FlashMLA:DeepSeek高性能注意力内核库,驱动V3模型实现660 TFLOPS

FlashMLA is DeepSeek's optimized attention kernel library that powers DeepSeek-V3 models, featuring token-level sparse attention with FP8 KV cache support, achieving up to 660 TFLOPS performance on NVIDIA H800 GPUs. (FlashMLA是DeepSeek优化的注意力内核库,为DeepSeek-V3模型提供动力,具有令牌级稀疏注意力和FP8 KV缓存支持,在NVIDIA H800 GPU上实现高达660 TFLOPS的性能。)
DeepSeek2026/1/23
阅读全文 →
Excel数据透视表从入门到精通:AI赋能高效数据分析与可视化

Excel数据透视表从入门到精通:AI赋能高效数据分析与可视化

This article provides a comprehensive guide to creating and customizing Excel pivot tables, from basic setup to advanced formatting, and highlights how AI tools can streamline data analysis and visualization for enhanced productivity. (本文全面介绍了Excel数据透视表的创建与自定义方法,从基础设置到高级格式化,并重点展示了AI工具如何简化数据分析和可视化,从而提升工作效率。)
AI大模型2026/1/23
阅读全文 →
Mastra框架:构建企业级AI助手与自主代理的TypeScript解决方案

Mastra框架:构建企业级AI助手与自主代理的TypeScript解决方案

Mastra is a TypeScript framework for building AI assistants and agents, used by major companies for internal automation and customer-facing applications. It features LLM model routing, agents with tools and workflows, RAG knowledge bases, integrations, and evaluation systems, deployable locally or to serverless clouds. Mastra是一个用于构建AI助手和代理的TypeScript框架,被大型企业用于内部自动化和面向客户的应用程序。它具有LLM模型路由、带工具和工作流的代理、RAG知识库、集成和评估系统,可本地部署或部署到无服务器云。
AI大模型2026/1/23
阅读全文 →
从字典到数据库:探索“查询”的演变历程与技术应用

从字典到数据库:探索“查询”的演变历程与技术应用

Grok-1 is an open-source large language model developed by xAI, featuring 314 billion parameters and a Mixture-of-Experts architecture. It demonstrates strong performance in reasoning, coding, and multilingual tasks, with potential applications in research and enterprise solutions. (Grok-1是由xAI开发的开源大语言模型,拥有3140亿参数和专家混合架构。在推理、编程和多语言任务中表现出色,具备研究和企业应用的潜力。)
LLMS2026/1/23
阅读全文 →
从日常语言到技术指令:深入理解“查询”的多维含义

从日常语言到技术指令:深入理解“查询”的多维含义

Grok-1 is an open-source large language model developed by xAI, featuring 314 billion parameters and a Mixture-of-Experts architecture. It demonstrates strong performance in reasoning, coding, and multilingual tasks while maintaining full transparency through open weights and documentation. (Grok-1是由xAI开发的开源大语言模型,拥有3140亿参数和专家混合架构。该模型在推理、编程和多语言任务中表现出色,并通过开放的权重和文档保持完全透明。)
GEO2026/1/23
阅读全文 →