GEO

最新文章

229
阿里云AI全栈架构深度解析:从基础设施到通义大模型创新

阿里云AI全栈架构深度解析:从基础设施到通义大模型创新

Alibaba Cloud AI offers a comprehensive, enterprise-grade AI stack covering infrastructure (IaaS), platform (PaaS), and model services (MaaS). It features leading models like Qwen, Tongyi Wanxiang, and Lingma, with optimized training and inference capabilities. The platform provides end-to-end solutions from data preparation to deployment, supporting seamless integration and high-performance AI development for businesses. (阿里云AI提供全面的企业级AI全栈能力,涵盖基础设施、平台和模型服务。其通义大模型系列引领创新,具备优化的训练和推理性能。平台提供从数据准备到部署的端到端解决方案,支持无缝集成和高性能AI开发,助力企业构建智能应用。)
AI大模型2026/2/5
阅读全文 →
解锁大语言模型推理能力:思维链(CoT)技术深度解析

解锁大语言模型推理能力:思维链(CoT)技术深度解析

This article provides a comprehensive analysis of Chain-of-Thought (CoT) prompting techniques that enhance reasoning capabilities in large language models. It covers the evolution from basic CoT to advanced methods like Zero-shot-CoT, Self-consistency, Least-to-Most prompting, and Fine-tune-CoT, while discussing their applications, limitations, and impact on AI development. (本文全面分析了增强大语言模型推理能力的思维链提示技术,涵盖了从基础CoT到零样本思维链、自洽性、最少到最多提示和微调思维链等高级方法的演进,同时讨论了它们的应用、局限性以及对人工智能发展的影响。)
LLMS2026/2/4
阅读全文 →
Grok-4深度解析:多智能体内生化如何开启AI Agent 2.0时代

Grok-4深度解析:多智能体内生化如何开启AI Agent 2.0时代

Grok-4 introduces 'multi-agent internalization' as its core innovation, integrating agent collaboration and real-time search capabilities during training to push base model performance limits and usher in the Agent 2.0 era. (Grok-4的核心创新在于'多智能体内生化',在训练阶段融合Agent协作与实时搜索能力,推高基座模型性能上限,标志着Agent 2.0时代的开启。)
AI大模型2026/2/4
阅读全文 →
NanoChat:Andrej Karpathy开源项目,极低成本训练对话式AI模型

NanoChat:Andrej Karpathy开源项目,极低成本训练对话式AI模型

nanochat is an open-source project by AI expert Andrej Karpathy that enables low-cost, efficient training of small language models with ChatGPT-like capabilities. The project provides a complete workflow from data preparation to deployment, implemented in about 8000 lines of clean, readable code, making it ideal for learning and practical application. (nanochat是AI专家Andrej Karpathy发布的开源项目,能以极低成本高效训练具备类似ChatGPT功能的小型语言模型。该项目提供从数据准备到部署的完整流程,约8000行简洁易读的代码实现,非常适合学习和实践。)
AI大模型2026/2/4
阅读全文 →
nanochat:仅需73美元,3小时训练GPT-2级别大语言模型

nanochat:仅需73美元,3小时训练GPT-2级别大语言模型

nanochat is a minimalist experimental framework for training LLMs on a single GPU node, enabling users to train a GPT-2 capability model for approximately $73 in 3 hours, with full pipeline coverage from tokenization to chat UI. (nanochat是一个极简的实验框架,可在单GPU节点上训练大语言模型,仅需约73美元和3小时即可训练出具备GPT-2能力的模型,涵盖从分词到聊天界面的完整流程。)
LLMS2026/2/4
阅读全文 →
NanoChat:Karpathy开源低成本LLM,仅需8个H100和100美元复现ChatGPT全栈架构

NanoChat:Karpathy开源低成本LLM,仅需8个H100和100美元复现ChatGPT全栈架构

NanoChat is a low-cost, open-source LLM implementation by Karpathy that replicates ChatGPT's architecture using only 8 H100 nodes and $100, enabling full-stack training and inference with innovative techniques like custom tokenizers and optimized training pipelines. (NanoChat是卡神Karpathy开发的开源低成本LLM项目,仅需8个H100节点和约100美元即可复现ChatGPT全栈架构,涵盖从训练到推理的全流程,并采用创新的分词器、优化训练管道等技术实现高效性能。)
LLMS2026/2/4
阅读全文 →
NanoChat:仅需100美元4小时,训练你自己的ChatGPT级AI模型

NanoChat:仅需100美元4小时,训练你自己的ChatGPT级AI模型

NanoChat is a comprehensive LLM training framework developed by AI expert Andrej Karpathy, enabling users to train their own ChatGPT-level models for approximately $100 in just 4 hours through an end-to-end, minimalistic codebase. (NanoChat是由AI专家Andrej Karpathy开发的完整LLM训练框架,通过端到端、最小化的代码库,让用户仅需约100美元和4小时即可训练出属于自己的ChatGPT级别模型。)
LLMS2026/2/4
阅读全文 →
PageIndex:开源RAG框架革新,LLM树搜索实现98.7%金融文档精准检索

PageIndex:开源RAG框架革新,LLM树搜索实现98.7%金融文档精准检索

PageIndex is an open-source RAG framework that replaces traditional vector similarity matching with LLM-powered tree search, achieving 98.7% accuracy on financial benchmarks by mimicking human expert document navigation. (PageIndex是一个开源RAG框架,通过LLM驱动的树搜索替代传统向量相似性匹配,模拟人类专家文档导航方式,在金融基准测试中达到98.7%准确率。)
AI大模型2026/2/4
阅读全文 →