GEO

最新文章

63
LangExtract是什么?Python库利用大语言模型提取结构化信息 | Geoz.com.cn

LangExtract是什么?Python库利用大语言模型提取结构化信息 | Geoz.com.cn

LangExtract is a Python library that leverages large language models (LLMs) to extract structured information from unstructured text documents, featuring precise source mapping, customizable extraction schemas, and support for multiple model providers. (LangExtract 是一个 Python 库,利用大语言模型从非结构化文本文档中提取结构化信息,具备精确的源文本映射、可定制的提取模式以及多模型提供商支持。)
LLMS2026/2/12
阅读全文 →
如何从非结构化文本提取结构化信息?LangExtract库2026指南 | Geoz.com.cn

如何从非结构化文本提取结构化信息?LangExtract库2026指南 | Geoz.com.cn

LangExtract is a Python library that leverages Large Language Models (LLMs) to extract structured information from unstructured text documents through user-defined instructions and few-shot examples. It features precise source grounding, reliable structured outputs, optimized long document processing, interactive visualization, and flexible LLM support across cloud and local models. LangExtract adapts to various domains without requiring model fine-tuning, making it suitable for applications ranging from literary analysis to clinical data extraction. LangExtract是一个基于大型语言模型(LLM)的Python库,通过用户定义的指令和少量示例从非结构化文本中提取结构化信息。它具有精确的源文本定位、可靠的结构化输出、优化的长文档处理、交互式可视化以及灵活的LLM支持(涵盖云端和本地模型)。LangExtract无需模型微调即可适应不同领域,适用于从文学分析到临床数据提取等多种应用场景。
LLMS2026/2/9
阅读全文 →
Cognee深度测评:开源AI记忆引擎如何重塑知识管理与LLM推理能力

Cognee深度测评:开源AI记忆引擎如何重塑知识管理与LLM推理能力

Cognee is an innovative open-source AI memory engine that combines knowledge graphs and vector storage technologies to provide dynamic memory capabilities for large language models (LLMs) and AI agents. This comprehensive evaluation covers its functional features, installation deployment, use cases, and commercial value. (Cognee是一个创新的开源AI记忆引擎,通过结合知识图谱和向量存储技术,为大型语言模型和AI智能体提供动态记忆能力。本测评全面评估其功能特性、安装部署、使用案例及商业价值。)
AI大模型2026/2/6
阅读全文 →
打破AI Agent“失忆”瓶颈:开源记忆工具Cognee技术深度解析

打破AI Agent“失忆”瓶颈:开源记忆工具Cognee技术深度解析

Cognee is an open-source AI memory tool that addresses the 'memory loss' problem in AI Agents through its innovative ECL pipeline architecture, achieving 92.5% answer relevance. It supports dynamic memory updates, multi-source data compatibility, and offers both code and UI operation modes for easy deployment and use. Cognee为AI Agent解决“失忆”问题的开源记忆工具,通过创新的ECL流水线架构实现92.5%的高回答相关性,支持动态记忆更新和多源数据兼容,提供代码与UI双操作模式,部署简便。
AI大模型2026/2/6
阅读全文 →
解锁大语言模型推理能力:思维链(CoT)技术深度解析

解锁大语言模型推理能力:思维链(CoT)技术深度解析

This article provides a comprehensive analysis of Chain-of-Thought (CoT) prompting techniques that enhance reasoning capabilities in large language models. It covers the evolution from basic CoT to advanced methods like Zero-shot-CoT, Self-consistency, Least-to-Most prompting, and Fine-tune-CoT, while discussing their applications, limitations, and impact on AI development. (本文全面分析了增强大语言模型推理能力的思维链提示技术,涵盖了从基础CoT到零样本思维链、自洽性、最少到最多提示和微调思维链等高级方法的演进,同时讨论了它们的应用、局限性以及对人工智能发展的影响。)
LLMS2026/2/4
阅读全文 →
Grok-4深度解析:多智能体内生化如何开启AI Agent 2.0时代

Grok-4深度解析:多智能体内生化如何开启AI Agent 2.0时代

Grok-4 introduces 'multi-agent internalization' as its core innovation, integrating agent collaboration and real-time search capabilities during training to push base model performance limits and usher in the Agent 2.0 era. (Grok-4的核心创新在于'多智能体内生化',在训练阶段融合Agent协作与实时搜索能力,推高基座模型性能上限,标志着Agent 2.0时代的开启。)
AI大模型2026/2/4
阅读全文 →
NanoChat:Andrej Karpathy开源项目,极低成本训练对话式AI模型

NanoChat:Andrej Karpathy开源项目,极低成本训练对话式AI模型

nanochat is an open-source project by AI expert Andrej Karpathy that enables low-cost, efficient training of small language models with ChatGPT-like capabilities. The project provides a complete workflow from data preparation to deployment, implemented in about 8000 lines of clean, readable code, making it ideal for learning and practical application. (nanochat是AI专家Andrej Karpathy发布的开源项目,能以极低成本高效训练具备类似ChatGPT功能的小型语言模型。该项目提供从数据准备到部署的完整流程,约8000行简洁易读的代码实现,非常适合学习和实践。)
AI大模型2026/2/4
阅读全文 →
nanochat:仅需73美元,3小时训练GPT-2级别大语言模型

nanochat:仅需73美元,3小时训练GPT-2级别大语言模型

nanochat is a minimalist experimental framework for training LLMs on a single GPU node, enabling users to train a GPT-2 capability model for approximately $73 in 3 hours, with full pipeline coverage from tokenization to chat UI. (nanochat是一个极简的实验框架,可在单GPU节点上训练大语言模型,仅需约73美元和3小时即可训练出具备GPT-2能力的模型,涵盖从分词到聊天界面的完整流程。)
LLMS2026/2/4
阅读全文 →