GEO

最新文章

404
Papr Memory是什么?AI系统记忆层如何实现多跳RAG | Geoz.com.cn

Papr Memory是什么?AI系统记忆层如何实现多跳RAG | Geoz.com.cn

Papr Memory is an advanced memory layer for AI systems that enables multi-hop RAG with state-of-the-art accuracy through real-time data ingestion, smart chunking, entity extraction, and dynamic knowledge graph creation. It supports various data sources and provides intelligent retrieval with query expansion, hybrid search, and contextual reranking. (Papr Memory 是一个先进的AI系统记忆层,通过实时数据摄取、智能分块、实体提取和动态知识图谱构建,实现具有最先进准确性的多跳检索增强生成。它支持多种数据源,并提供具有查询扩展、混合搜索和上下文重排的智能检索功能。)
AI大模型2026/2/13
阅读全文 →
Gemini文档处理器如何生成泰语摘要?2025最新AI工具指南 | Geoz.com.cn

Gemini文档处理器如何生成泰语摘要?2025最新AI工具指南 | Geoz.com.cn

Gemini Document Processor is a powerful document processing tool that leverages Google's Gemini AI to generate high-quality Thai language summaries from PDF and EPUB files, featuring image extraction and seamless Obsidian integration. (Gemini文档处理器是一款强大的文档处理工具,利用Google的Gemini AI从PDF和EPUB文件中生成高质量的泰语摘要,具备图像提取和无缝Obsidian集成功能。)
Gemini2026/2/13
阅读全文 →
什么是GEO生成式引擎优化?2024最新指南与SEO对比 | Geoz.com.cn

什么是GEO生成式引擎优化?2024最新指南与SEO对比 | Geoz.com.cn

Generative Engine Optimization (GEO) is the process of optimizing content to increase its chances of being cited or mentioned in AI-generated answers from tools like ChatGPT and Google AI Overviews, differing from traditional SEO which focuses on search engine rankings. (生成式引擎优化(GEO)是通过优化内容,提高其在ChatGPT和Google AI概览等工具生成的AI答案中被引用或提及几率的过程,与传统专注于搜索引擎排名的SEO有所不同。)
GEO2026/2/13
阅读全文 →
GEO与SEO区别是什么?2024生成式AI优化指南 | Geoz.com.cn

GEO与SEO区别是什么?2024生成式AI优化指南 | Geoz.com.cn

GEO (Generative Engine Optimization) shares similarities with SEO in requiring high-quality, structured content published on authoritative sources, but differs in focusing on contextual relevance for AI-generated answers rather than keyword rankings. (GEO与SEO都依赖高质量结构化内容和权威发布渠道,但GEO专注于为AI生成答案提供上下文相关内容,而非关键词排名优化。)
GEO技术2026/2/13
阅读全文 →
AI搜索时代B2B品牌如何不被遗忘?2025年GEO优化全攻略 | Geoz.com.cn

AI搜索时代B2B品牌如何不被遗忘?2025年GEO优化全攻略 | Geoz.com.cn

GEO (Generative Engine Optimization) is the strategy to make AI recommend your brand when answering user queries, shifting focus from traditional SEO's 'user finding you' to 'AI recommending you'. This article explains GEO's importance in the AI search era, outlines a 5-step implementation methodology, and provides a real-world case study showing how a laser cutting machine manufacturer increased AI mention rates from 0% to 60% in 3 months. (生成式引擎优化(GEO)是让AI在回答用户问题时主动推荐品牌的策略,核心从传统SEO的“让用户找到你”转变为“让AI推荐你”。本文解析了AI搜索时代GEO的重要性,提供了5步落地方法论,并通过激光切割机厂商的真实案例展示了3个月内品牌AI提及率从0%提升至60%的效果。)
GEO2026/2/13
阅读全文 →
什么是LLMs.txt?2024年AI爬虫标准指南 | Geoz.com.cn

什么是LLMs.txt?2024年AI爬虫标准指南 | Geoz.com.cn

LLMs.txt is a proposed web standard designed to help large language models (LLMs) better understand and utilize website content by providing a structured, curated list of important pages in Markdown format. It aims to address challenges AI crawlers face with modern websites, such as JavaScript-loaded content and information overload, potentially improving AI-generated responses and reducing training inefficiencies. (LLMs.txt是一项拟议的网络标准,旨在通过以Markdown格式提供结构化、精选的重要页面列表,帮助大型语言模型(LLMs)更好地理解和利用网站内容。它旨在解决AI爬虫在现代网站中面临的挑战,如JavaScript加载内容和信息过载,可能改善AI生成的响应并减少训练低效。)
LLMS2026/2/13
阅读全文 →
什么是GEO生成式引擎优化?2025最新策略解析与AI营销指南 | Geoz.com.cn

什么是GEO生成式引擎优化?2025最新策略解析与AI营销指南 | Geoz.com.cn

GEO (Generative Engine Optimization) is an emerging marketing optimization strategy that leverages LLM-based information cognition and answer generation to enhance brand visibility and trust in AI-generated responses. (GEO生成式引擎优化是一种新兴的营销优化策略,基于大语言模型的信息认知与答案生成技术,通过优化内容提升品牌在AI生成答案中的可见度与可信度。)
GEO2026/2/13
阅读全文 →
如何使用LangExtract构建知识图谱?2025年Google开源工具实战指南 | Geoz.com.cn

如何使用LangExtract构建知识图谱?2025年Google开源工具实战指南 | Geoz.com.cn

LangExtract is Google's open-source programmatic extraction tool that transforms unstructured text into structured, traceable data with character-level offsets. It enables efficient long-document processing, multi-round extraction for recall, and direct structured output, reducing traditional RAG overhead. This guide demonstrates building a knowledge graph chatbot using Streamlit, Agraph, and LangExtract with dynamic few-shot template selection. LangExtract是Google开源的程序化抽取工具,可将非结构化文本转化为可追溯的结构化数据,通过字符偏移实现高亮验证。它支持长文档分块并行处理、多轮抽取保证召回率,并直接生成结构化结果,减少传统RAG流程开销。本文演示了使用Streamlit、Agraph和LangExtract构建知识图谱聊天机器人,实现动态few-shot模板选择和实体关系并行抽取。
AI大模型2026/2/12
阅读全文 →