GEO

最新文章

321
FinRobot:开源金融AI智能体平台终极指南,开发效率提升90%

FinRobot:开源金融AI智能体平台终极指南,开发效率提升90%

FinRobot is an open-source AI agent platform designed for financial applications, leveraging large language models (LLMs) to automate financial analysis, reduce development time by 90%, and support multi-agent collaboration through a four-layer architecture. It features quick deployment, intelligent data processing, and production-ready monitoring systems. (FinRobot是一个开源AI智能体平台,专为金融应用设计,利用大语言模型实现金融分析自动化,减少90%开发时间,并通过四层架构支持多智能体协作。具备快速部署、智能数据处理和生产级监控系统。)
AI大模型2026/1/25
阅读全文 →
FinRobot:超越FinGPT的开源金融AI智能体平台

FinRobot:超越FinGPT的开源金融AI智能体平台

FinRobot is an open-source AI agent platform specifically designed for financial analysis, extending beyond FinGPT by integrating diverse AI technologies including specialized LLMs, financial chain-of-thought prompting, and a multi-layer architecture for comprehensive financial applications. (FinRobot是一个专为金融分析设计的开源AI智能体平台,超越了FinGPT的范围,集成了包括专门调优的大语言模型、金融思维链提示和多层架构在内的多种AI技术,为金融应用提供全面解决方案。)
AI大模型2026/1/25
阅读全文 →
Google生成式AI生态全解析:Gemini模型如何驱动下一代应用开发

Google生成式AI生态全解析:Gemini模型如何驱动下一代应用开发

Google's generative AI ecosystem integrates technologies like Gemini models, Google AI Studio, Firebase, Project IDX, and Studio Bot to enable developers to build AI-powered applications efficiently. These tools leverage large language models trained on vast datasets to predict and generate content across text, images, video, and audio, transforming how teams create and innovate. (Google的生成式AI生态系统整合了Gemini模型、Google AI Studio、Firebase、Project IDX和Studio Bot等技术,使开发者能够高效构建AI驱动的应用程序。这些工具利用基于海量数据集训练的大语言模型来预测和生成文本、图像、视频和音频内容,改变了团队的创作和创新方式。)
AI大模型2026/1/25
阅读全文 →
OpenBMB:开源大模型工具链,降低AI开发门槛

OpenBMB:开源大模型工具链,降低AI开发门槛

OpenBMB (Open Lab for Big Model Base) is an open-source initiative aimed at building a comprehensive ecosystem for large-scale pre-trained language models. It provides a full suite of tools covering data processing, model training, fine-tuning, compression, and inference, significantly reducing the cost and technical barriers of working with billion-parameter models. The framework includes specialized tools like BMTrain for efficient training, BMCook for model compression, BMInf for low-cost inference, OpenPrompt for prompt learning, and OpenDelta for parameter-efficient fine-tuning. OpenBMB fosters a collaborative community to standardize and democratize large model development and application. (OpenBMB(大模型开源基础实验室)是一个旨在构建大规模预训练语言模型生态系统的开源项目。它提供了一套覆盖数据处理、模型训练、微调、压缩和推理全流程的工具链,显著降低了百亿参数模型的使用成本和技术门槛。该框架包含BMTrain(高效训练)、BMCook(模型压缩)、BMInf(低成本推理)、OpenPrompt(提示学习)和OpenDelta(参数高效微调)等专用工具。OpenBMB致力于通过开源社区协作,推动大模型的标准化、普及化和实用化。)
AI大模型2026/1/25
阅读全文 →
UltraRAG:基于MCP架构的低代码可视化RAG开发框架

UltraRAG:基于MCP架构的低代码可视化RAG开发框架

UltraRAG is a low-code RAG development framework based on Model Context Protocol (MCP) architecture, emphasizing visual orchestration and reproducible evaluation workflows. It modularizes core components like retrieval, generation, and evaluation as independent MCP Servers, providing transparent and repeatable development processes through interactive UI and pipeline builders. (UltraRAG是一个基于模型上下文协议(MCP)架构的低代码检索增强生成(RAG)开发框架,强调可视化编排与可复现的评估流程。它将检索、生成与评估等核心组件封装为独立的MCP服务器,通过交互式UI和流水线构建器提供透明且可重复的研发流程。)
AI大模型2026/1/25
阅读全文 →
UltraRAG 2.0:基于MCP架构的开源框架,用YAML配置简化复杂RAG系统开发

UltraRAG 2.0:基于MCP架构的开源框架,用YAML配置简化复杂RAG系统开发

English Summary: UltraRAG 2.0 is an open-source framework based on Model Context Protocol (MCP) architecture that simplifies complex RAG system development through YAML configuration, enabling low-code implementation of multi-step reasoning, dynamic retrieval, and modular workflows. It addresses engineering bottlenecks in research and production RAG applications. 中文摘要翻译: UltraRAG 2.0是基于Model Context Protocol(MCP)架构的开源框架,通过YAML配置文件简化复杂RAG系统开发,实现低代码构建多轮推理、动态检索和模块化工作流。它解决了研究和生产环境中RAG应用的工程瓶颈问题。
AI大模型2026/1/25
阅读全文 →
AirLLM:4GB GPU上运行700亿参数大模型的开源框架

AirLLM:4GB GPU上运行700亿参数大模型的开源框架

AirLLM is an open-source framework that enables running 70B-parameter large language models on a single 4GB GPU through layer-wise offloading and memory optimization techniques, democratizing access to cutting-edge AI without traditional compression methods. (AirLLM是一个开源框架,通过分层卸载和内存优化技术,使700亿参数的大语言模型能够在单个4GB GPU上运行,无需传统压缩方法即可实现前沿AI的普及化访问。)
AI大模型2026/1/25
阅读全文 →
从聊天机器人到智能执行者:揭秘AI智能体的自动化革命

从聊天机器人到智能执行者:揭秘AI智能体的自动化革命

AI Agents represent a paradigm shift from passive text generation to active task execution, combining LLMs with planning, tool use, and memory to automate complex workflows. This article explores their architecture, working principles, and practical applications in content creation, highlighting the transition from chatbots to intelligent executors. AI智能体标志着从被动文本生成到主动任务执行的范式转变,它结合了大语言模型、规划、工具使用和记忆功能,能够自动化复杂工作流程。本文探讨了其在内容创作领域的架构、工作原理和实际应用,强调了从聊天机器人到智能执行者的转变。
AI大模型2026/1/24
阅读全文 →
LLMs.txt:为AI智能体提供结构化文档访问的新标准

LLMs.txt:为AI智能体提供结构化文档访问的新标准

LLMs.txt and llms-full.txt are specialized document formats designed to provide Large Language Models (LLMs) and AI agents with structured access to programming documentation and APIs, particularly useful in Integrated Development Environments (IDEs). The llms.txt format serves as an index file containing links with brief descriptions, while llms-full.txt contains all detailed content in a single file. Key considerations include file size limitations for LLM context windows and integration methods through MCP servers like mcpdoc. (llms.txt和llms-full.txt是专为大型语言模型和AI智能体设计的文档格式,提供对编程文档和API的结构化访问,在集成开发环境中尤其有用。llms.txt作为索引文件包含带简要描述的链接,而llms-full.txt将所有详细内容整合在单个文件中。关键考虑因素包括LLM上下文窗口的文件大小限制以及通过MCP服务器的集成方法。)
LLMS2026/1/24
阅读全文 →