GEO

最新文章

233
PageIndex:基于推理的下一代RAG框架,准确率高达98.7%

PageIndex:基于推理的下一代RAG框架,准确率高达98.7%

PageIndex is an open-source reasoning-based RAG framework that replaces vector similarity search with structured document trees and LLM reasoning, achieving 98.7% accuracy on FinanceBench by preserving document context and enabling transparent retrieval paths. (PageIndex 是一个开源的基于推理的 RAG 框架,它用结构化文档树和大模型推理取代向量相似度搜索,通过在 FinanceBench 上实现 98.7% 的准确率,保留了文档上下文并实现了透明的检索路径。)
AI大模型2026/1/27
阅读全文 →
PageIndex:无需向量数据库的智能文档分析框架,实现类人检索

PageIndex:无需向量数据库的智能文档分析框架,实现类人检索

PageIndex is a vectorless, reasoning-based RAG framework that uses hierarchical tree indexing and LLM reasoning for human-like retrieval over long professional documents, eliminating the need for vector databases and chunking. (PageIndex是一个向量无关、基于推理的RAG框架,通过分层树索引和LLM推理实现类人检索,适用于长专业文档分析,无需向量数据库和分块处理。)
AI大模型2026/1/27
阅读全文 →
PageIndex vs. Vector DB:如何为你的任务选择正确的RAG技术

PageIndex vs. Vector DB:如何为你的任务选择正确的RAG技术

PageIndex simulates human expert knowledge extraction by transforming documents into tree-structured indexes and using LLM reasoning for precise information retrieval. It excels in domain-specific applications like financial reports and legal documents, prioritizing accuracy and explainability over speed. (PageIndex通过模拟人类专家知识提取,将文档转换为树状结构索引,并利用LLM推理进行精确信息检索。它在金融报告和法律文件等特定领域应用中表现出色,优先考虑准确性和可解释性而非速度。)
LLMS2026/1/27
阅读全文 →
Mastra:构建生产级AI应用的TypeScript框架深度解析

Mastra:构建生产级AI应用的TypeScript框架深度解析

Mastra is a comprehensive TypeScript framework for building production-ready AI applications, offering integrated workflows, memory systems, streaming responses, evaluation tools, and a visual Studio interface to streamline development. (Mastra是一个全面的TypeScript框架,用于构建生产就绪的AI应用,提供集成的工作流、记忆系统、流式响应、评估工具和可视化Studio界面,以简化开发流程。)
AI大模型2026/1/27
阅读全文 →
Mastra:基于TypeScript的AI应用开发框架,快速构建智能工作流与Agent系统

Mastra:基于TypeScript的AI应用开发框架,快速构建智能工作流与Agent系统

Mastra is a TypeScript-based framework for rapidly building AI applications, offering primitives like workflows, agents, RAG, integrations, and evaluations, with support for local or serverless cloud deployment. (Mastra是一个基于TypeScript的框架,用于快速构建AI应用程序,提供工作流、Agent、RAG、集成和评估等基元集,支持在本地或无服务器云上部署。)
AI大模型2026/1/27
阅读全文 →
llms.txt:为大型语言模型量身定制的网站内容新标准

llms.txt:为大型语言模型量身定制的网站内容新标准

The llms.txt proposal introduces a standardized markdown file at website roots to provide LLM-friendly content, addressing context window limitations by offering curated, structured information with links to detailed resources. (llms.txt提案通过在网站根目录引入标准化markdown文件,为大型语言模型提供友好内容,通过精选结构化信息和详细资源链接,解决上下文窗口限制问题。)
LLMS2026/1/26
阅读全文 →
Grok-4.1深度解析:xAI 2025年情感智能与创造力重大升级

Grok-4.1深度解析:xAI 2025年情感智能与创造力重大升级

Grok-4.1 is xAI's 2025 major upgrade focusing on emotional intelligence, creativity, and factual accuracy, achieving 64.78% user preference over previous versions with two configurations: reasoning (1483 Elo) and non-reasoning (1465 Elo). It features a 2M token context window, OpenAI-compatible API, and reduced hallucination rates for enhanced human-like interactions. (Grok-4.1是xAI在2025年发布的重要升级版本,专注于情感智能、创造力和事实准确性,用户偏好度比旧版本高出64.78%。提供推理和非推理两种配置,分别获得1483和1465 Elo评分,具备200万token上下文窗口,兼容OpenAI API接口,幻觉率显著降低,支持更人性化的交互场景。)
AI大模型2026/1/26
阅读全文 →
FinRobot.ai:开源金融AI Agent平台,用大语言模型重塑金融分析

FinRobot.ai:开源金融AI Agent平台,用大语言模型重塑金融分析

FinRobot.ai is an open-source financial AI Agent platform developed by the AI4Finance Foundation, leveraging large language models (LLMs) and a four-layer modular architecture to provide plug-and-play intelligent solutions for financial analysis, quantitative trading, and investment research. It addresses key industry pain points like data fragmentation and high professional barriers through financial Chain-of-Thought reasoning and specialized agents. (FinRobot.ai是由AI4Finance基金会开发的开源金融AI Agent平台,以大语言模型为核心,采用四层模块化架构,通过金融链式思维和专用代理,为金融分析、量化交易和投资研究提供可插拔的智能解决方案,解决数据碎片化和专业门槛高等行业痛点。)
AI大模型2026/1/25
阅读全文 →