
Graph RAG:知识图谱如何突破大语言模型的局限
Graph RAG (Retrieval Augmented Generation) enhances LLM performance by integrating knowledge graphs with retrieval mechanisms, addressing limitations like domain-specific knowledge gaps and real-time information access. It combines entity extraction, subgraph retrieval, and LLM synthesis to provide accurate, context-aware responses.
Graph RAG(检索增强生成)通过将知识图谱与检索机制结合,提升大语言模型性能,解决领域知识不足和实时信息获取等局限。它结合实体提取、子图检索和LLM合成,提供准确、上下文感知的响应。
LLMS2026/1/24
阅读全文 →






