GEO

最新文章

129
阿里通义实验室开源Zvec向量数据库:2024边缘AI应用开发指南 | Geoz.com.cn

阿里通义实验室开源Zvec向量数据库:2024边缘AI应用开发指南 | Geoz.com.cn

Alibaba's Tongyi Lab has released Zvec, an open-source, in-process vector database designed for edge and on-device retrieval workloads, providing SQLite-like simplicity and high-performance on-device RAG. (阿里通义实验室开源Zvec,这是一款专为边缘和端侧检索工作负载设计的进程内向量数据库,提供类似SQLite的简洁性和高性能端侧RAG能力。)
AI大模型2026/2/16
阅读全文 →
AI数据转换框架如何选择?2024高性能Rust引擎CocoIndex指南 | Geoz.com.cn

AI数据转换框架如何选择?2024高性能Rust引擎CocoIndex指南 | Geoz.com.cn

CocoIndex is an ultra-performant data transformation framework for AI applications, featuring a Rust core engine, incremental processing, and built-in data lineage. It enables developers to define transformations in ~100 lines of Python using a dataflow programming model, with plug-and-play components for various sources, targets, and transformations. CocoIndex keeps source and target data in sync effortlessly and supports incremental indexing with minimal recomputation. CocoIndex是一款基于Rust核心引擎的高性能AI数据转换框架,支持增量处理和内置数据血缘追踪。开发者只需约100行Python代码即可在数据流中定义转换,采用数据流编程模型,提供即插即用的构建模块,轻松保持源数据与目标数据同步,并支持增量索引以减少重复计算。
AI大模型2026/2/16
阅读全文 →
MiniMax M2.5大模型全面升级:更强推理与代码能力详解 | Geoz.com.cn

MiniMax M2.5大模型全面升级:更强推理与代码能力详解 | Geoz.com.cn

MiniMax M2.5 represents a comprehensive upgrade of the universal large model, featuring enhanced reasoning, broader knowledge, and refined coding capabilities. The company's full-stack model matrix covers text, speech, video, image, and music, empowering developers to efficiently build intelligent applications. (MiniMax M2.5 全面升级的通用大模型,具备更强推理、更广知识和更精代码能力。公司的全栈模型矩阵涵盖文本、语音、视频、图像与音乐五大方向,助力开发者高效构建智能应用。)
AI大模型2026/2/15
阅读全文 →
Papr Memory是什么?AI系统记忆层如何实现多跳RAG | Geoz.com.cn

Papr Memory是什么?AI系统记忆层如何实现多跳RAG | Geoz.com.cn

Papr Memory is an advanced memory layer for AI systems that enables multi-hop RAG with state-of-the-art accuracy through real-time data ingestion, smart chunking, entity extraction, and dynamic knowledge graph creation. It supports various data sources and provides intelligent retrieval with query expansion, hybrid search, and contextual reranking. (Papr Memory 是一个先进的AI系统记忆层,通过实时数据摄取、智能分块、实体提取和动态知识图谱构建,实现具有最先进准确性的多跳检索增强生成。它支持多种数据源,并提供具有查询扩展、混合搜索和上下文重排的智能检索功能。)
AI大模型2026/2/13
阅读全文 →
什么是RLHF?基于人类反馈的强化学习技术详解 | Geoz.com.cn

什么是RLHF?基于人类反馈的强化学习技术详解 | Geoz.com.cn

Reinforcement Learning from Human Feedback (RLHF) is a machine learning technique that optimizes AI agent performance by training a reward model using direct human feedback. It is particularly effective for tasks with complex, ill-defined, or difficult-to-specify objectives, such as improving the relevance, accuracy, and ethics of large language models (LLMs) in chatbot applications. RLHF typically involves four phases: pre-training model, supervised fine-tuning, reward model training, and policy optimization, with proximal policy optimization (PPO) being a key algorithm. While RLHF has demonstrated remarkable results in training AI agents for complex tasks from robotics to NLP, it faces limitations including the high cost of human preference data, the subjectivity of human opinions, and risks of overfitting and bias. (RLHF(基于人类反馈的强化学习)是一种机器学习技术,通过使用直接的人类反馈训练奖励模型来优化AI代理的性能。它特别适用于具有复杂、定义不明确或难以指定目标的任务,例如提高大型语言模型(LLM)在聊天机器人应用中的相关性、准确性和伦理性。RLHF通常包括四个阶段:预训练模型、监督微调、奖励模型训练和策略优化,其中近端策略优化(PPO)是关键算法。虽然RLHF在从机器人学到自然语言处理的复杂任务AI代理训练中取得了显著成果,但它面临一些限制,包括人类偏好数据的高成本、人类意见的主观性以及过拟合和偏见的风险。)
AI大模型2026/2/8
阅读全文 →
阿里云AI全栈架构深度解析:从基础设施到通义大模型创新

阿里云AI全栈架构深度解析:从基础设施到通义大模型创新

Alibaba Cloud AI offers a comprehensive, enterprise-grade AI stack covering infrastructure (IaaS), platform (PaaS), and model services (MaaS). It features leading models like Qwen, Tongyi Wanxiang, and Lingma, with optimized training and inference capabilities. The platform provides end-to-end solutions from data preparation to deployment, supporting seamless integration and high-performance AI development for businesses. (阿里云AI提供全面的企业级AI全栈能力,涵盖基础设施、平台和模型服务。其通义大模型系列引领创新,具备优化的训练和推理性能。平台提供从数据准备到部署的端到端解决方案,支持无缝集成和高性能AI开发,助力企业构建智能应用。)
AI大模型2026/2/5
阅读全文 →
iOS设备上运行LLaMA2-13B:基于苹果MLX框架的完整技术指南

iOS设备上运行LLaMA2-13B:基于苹果MLX框架的完整技术指南

This article provides a comprehensive technical analysis of running LLaMA2-13B on iOS devices using Apple's MLX framework, covering environment setup, model architecture, code implementation, parameter analysis, and computational requirements. (本文深入分析了在iOS设备上使用苹果MLX框架运行LLaMA2-13B的技术细节,涵盖环境搭建、模型架构、代码实现、参数分析和算力需求。)
LLMS2026/2/3
阅读全文 →
突破极限:AirLLM实现70B大模型在4GB GPU上无损推理

突破极限:AirLLM实现70B大模型在4GB GPU上无损推理

AirLLM introduces a novel memory optimization technique that enables running 70B parameter large language models on a single 4GB GPU through layer-wise execution, flash attention optimization, and model file sharding, without compromising model performance through compression techniques like quantization or pruning. (AirLLM 通过分层推理、Flash Attention优化和模型文件分片等创新技术,实现在单个4GB GPU上运行70B参数大语言模型推理,无需通过量化、蒸馏等牺牲模型性能的压缩方法。)
AI大模型2026/1/24
阅读全文 →