GEO

分类:AI大模型

301
从聊天机器人到智能执行者:揭秘AI智能体的自动化革命

从聊天机器人到智能执行者:揭秘AI智能体的自动化革命

AI Agents represent a paradigm shift from passive text generation to active task execution, combining LLMs with planning, tool use, and memory to automate complex workflows. This article explores their architecture, working principles, and practical applications in content creation, highlighting the transition from chatbots to intelligent executors. AI智能体标志着从被动文本生成到主动任务执行的范式转变,它结合了大语言模型、规划、工具使用和记忆功能,能够自动化复杂工作流程。本文探讨了其在内容创作领域的架构、工作原理和实际应用,强调了从聊天机器人到智能执行者的转变。
AI大模型2026/1/24
阅读全文 →
RAG实战解析:机制、挑战与优化策略,提升大模型精准落地

RAG实战解析:机制、挑战与优化策略,提升大模型精准落地

RAG (Retrieval-Augmented Generation) is a technique that enhances large language models by integrating retrieval mechanisms to provide factual grounding and contextual references, effectively mitigating hallucination issues and improving response accuracy and reliability. This article analyzes RAG's operational mechanisms and common challenges in practical applications, offering insights for precise implementation of large models. (RAG(检索增强生成)是一种通过集成检索机制为大型语言模型提供事实基础和上下文参考的技术,有效缓解幻觉问题,提升回答的准确性和可靠性。本文剖析了RAG的具体运作机制及实际应用中的常见挑战,为大模型的精准落地提供指导。)
AI大模型2026/1/24
阅读全文 →
深入解析检索增强生成(RAG):原理、模块与应用

深入解析检索增强生成(RAG):原理、模块与应用

RAG (Retrieval-Augmented Generation) is an AI technique that enhances large language models' performance on knowledge-intensive tasks by retrieving relevant information from external knowledge bases and using it as prompts. This approach significantly improves answer accuracy, especially for tasks requiring specialized knowledge. (RAG(检索增强生成)是一种人工智能技术,通过从外部知识库检索相关信息并作为提示输入给大型语言模型,来增强模型处理知识密集型任务的能力。这种方法显著提升了回答的精确度,特别适用于需要专业知识的任务。)
AI大模型2026/1/24
阅读全文 →
Browser-Use:AI驱动的浏览器自动化革命,让AI像人类一样操作网页

Browser-Use:AI驱动的浏览器自动化革命,让AI像人类一样操作网页

Browser-Use is an open-source AI-powered browser automation platform that enables AI agents to interact with web pages like humans—navigating, clicking, filling forms, and scraping data—through natural language instructions or program logic. It bridges AI models with browsers, supports multiple LLMs, and offers both no-code interfaces and SDKs for technical and non-technical users. (Browser-Use是一个开源的AI驱动浏览器自动化平台,让AI代理能像人类一样与网页交互:导航、点击、填表、抓取数据等。它通过自然语言指令或程序逻辑连接AI与浏览器,支持多款LLM,并提供无代码界面和SDK,适合技术人员和非工程背景人员使用。)
AI大模型2026/1/24
阅读全文 →
4GB GPU运行Llama3 70B:AirLLM框架让高端AI触手可及

4GB GPU运行Llama3 70B:AirLLM框架让高端AI触手可及

This article demonstrates how to run the powerful Llama3 70B open-source LLM on just 4GB GPU memory using the AirLLM framework, making cutting-edge AI technology accessible to users with limited hardware resources. (本文展示了如何利用AirLLM框架,在仅4GB GPU内存的条件下运行强大的Llama3 70B开源大语言模型,使硬件资源有限的用户也能接触前沿AI技术。)
AI大模型2026/1/24
阅读全文 →
AirLLM:单卡4GB显存运行700亿大模型,革命性轻量化框架

AirLLM:单卡4GB显存运行700亿大模型,革命性轻量化框架

AirLLM is an innovative lightweight framework that enables running 70B parameter large language models on a single 4GB GPU through advanced memory optimization techniques, significantly reducing hardware costs while maintaining performance. (AirLLM是一个创新的轻量化框架,通过先进的内存优化技术,可在单张4GB GPU上运行700亿参数的大语言模型,大幅降低硬件成本的同时保持性能。)
AI大模型2026/1/24
阅读全文 →
UltraRAG 2.0:基于MCP架构的低代码高性能RAG框架,让复杂推理系统开发效率提升20倍

UltraRAG 2.0:基于MCP架构的低代码高性能RAG框架,让复杂推理系统开发效率提升20倍

UltraRAG 2.0 is a novel RAG framework built on the Model Context Protocol (MCP) architecture, designed to drastically reduce the engineering overhead of implementing complex multi-stage reasoning systems. It achieves this through componentized encapsulation and YAML-based workflow definitions, enabling developers to build advanced systems with as little as 5% of the code required by traditional frameworks, while maintaining high performance and supporting features like dynamic retrieval and conditional logic. UltraRAG 2.0 是一个基于模型上下文协议(MCP)架构设计的新型RAG框架,旨在显著降低构建复杂多阶段推理系统的工程成本。它通过组件化封装和YAML流程定义,使开发者能够用传统框架所需代码量的5%即可构建高级系统,同时保持高性能,并支持动态检索、条件判断等功能。
AI大模型2026/1/24
阅读全文 →
OpenBMB:清华大学开源社区如何推动大语言模型高效计算与参数微调

OpenBMB:清华大学开源社区如何推动大语言模型高效计算与参数微调

OpenBMB is an open-source community and toolset initiated by Tsinghua University since 2018, focused on building efficient computational tools for large-scale pre-trained language models. Its core contribution includes parameter-efficient fine-tuning methods, and it has released significant projects like UltraRAG 2.1, UltraEval-Audio v1.1.0, and the 4-billion-parameter AgentCPM-Explore model, which demonstrate strong performance in benchmarks. (OpenBMB是清华大学自2018年起支持发起的开源社区与工具集,致力于构建大规模预训练语言模型的高效计算工具。其核心贡献包括参数高效微调方法,并发布了UltraRAG 2.1、UltraEval-Audio v1.1.0和40亿参数的AgentCPM-Explore模型等重要项目,在多项基准测试中表现出色。)
AI大模型2026/1/24
阅读全文 →