GEO

最新文章

326
Cognee快速上手:10分钟构建动态知识图谱,替代传统RAG系统

Cognee快速上手:10分钟构建动态知识图谱,替代传统RAG系统

cognee is an open-source tool that provides deterministic LLM outputs for AI applications and agents by building dynamic knowledge graphs through its ECL (Extract, Cognify, Load) pipeline, offering a Pythonic alternative to traditional RAG systems with support for 30+ data sources and customizable workflows. (cognee是一款开源工具,通过其ECL(提取、认知化、加载)管道构建动态知识图谱,为AI应用和智能体提供确定性LLM输出,提供Pythonic的替代传统RAG系统的方案,支持30多种数据源和可定制工作流。)
AI大模型2026/2/6
阅读全文 →
阿里云AI全栈架构深度解析:从基础设施到通义大模型创新

阿里云AI全栈架构深度解析:从基础设施到通义大模型创新

Alibaba Cloud AI offers a comprehensive, enterprise-grade AI stack covering infrastructure (IaaS), platform (PaaS), and model services (MaaS). It features leading models like Qwen, Tongyi Wanxiang, and Lingma, with optimized training and inference capabilities. The platform provides end-to-end solutions from data preparation to deployment, supporting seamless integration and high-performance AI development for businesses. (阿里云AI提供全面的企业级AI全栈能力,涵盖基础设施、平台和模型服务。其通义大模型系列引领创新,具备优化的训练和推理性能。平台提供从数据准备到部署的端到端解决方案,支持无缝集成和高性能AI开发,助力企业构建智能应用。)
AI大模型2026/2/5
阅读全文 →
nanochat:仅需73美元,3小时训练GPT-2级别大语言模型

nanochat:仅需73美元,3小时训练GPT-2级别大语言模型

nanochat is a minimalist experimental framework for training LLMs on a single GPU node, enabling users to train a GPT-2 capability model for approximately $73 in 3 hours, with full pipeline coverage from tokenization to chat UI. (nanochat是一个极简的实验框架,可在单GPU节点上训练大语言模型,仅需约73美元和3小时即可训练出具备GPT-2能力的模型,涵盖从分词到聊天界面的完整流程。)
LLMS2026/2/4
阅读全文 →
NanoChat:Karpathy开源低成本LLM,仅需8个H100和100美元复现ChatGPT全栈架构

NanoChat:Karpathy开源低成本LLM,仅需8个H100和100美元复现ChatGPT全栈架构

NanoChat is a low-cost, open-source LLM implementation by Karpathy that replicates ChatGPT's architecture using only 8 H100 nodes and $100, enabling full-stack training and inference with innovative techniques like custom tokenizers and optimized training pipelines. (NanoChat是卡神Karpathy开发的开源低成本LLM项目,仅需8个H100节点和约100美元即可复现ChatGPT全栈架构,涵盖从训练到推理的全流程,并采用创新的分词器、优化训练管道等技术实现高效性能。)
LLMS2026/2/4
阅读全文 →
NanoChat:仅需100美元4小时,训练你自己的ChatGPT级AI模型

NanoChat:仅需100美元4小时,训练你自己的ChatGPT级AI模型

NanoChat is a comprehensive LLM training framework developed by AI expert Andrej Karpathy, enabling users to train their own ChatGPT-level models for approximately $100 in just 4 hours through an end-to-end, minimalistic codebase. (NanoChat是由AI专家Andrej Karpathy开发的完整LLM训练框架,通过端到端、最小化的代码库,让用户仅需约100美元和4小时即可训练出属于自己的ChatGPT级别模型。)
LLMS2026/2/4
阅读全文 →
FinRobot:金融AI代理平台,自动化股票分析与智能决策

FinRobot:金融AI代理平台,自动化股票分析与智能决策

FinRobot is an AI agent platform specifically designed for the financial sector, integrating multiple AI technologies to provide automated stock analysis, financial evaluation, and report generation. It features a four-layer architecture with perception, brain, and action modules for intelligent decision-making, and includes an intelligent scheduler for optimized task allocation. Developers can use FinRobot to build financial AI applications and learn practical applications of large models in finance, making it a practical tool combining fintech and AI. (FinRobot是一个专为金融领域设计的AI代理平台,整合多种AI技术,提供自动化股票分析、财务评估和报告生成功能。平台采用四层架构,通过感知、大脑和行动模块实现智能决策,配有智能调度器优化任务分配。开发者可利用FinRobot构建金融AI应用,学习大模型在金融领域的实际应用,是金融科技与AI结合的实用工具。)
AI大模型2026/2/4
阅读全文 →
PageIndex:开源RAG框架革新,LLM树搜索实现98.7%金融文档精准检索

PageIndex:开源RAG框架革新,LLM树搜索实现98.7%金融文档精准检索

PageIndex is an open-source RAG framework that replaces traditional vector similarity matching with LLM-powered tree search, achieving 98.7% accuracy on financial benchmarks by mimicking human expert document navigation. (PageIndex是一个开源RAG框架,通过LLM驱动的树搜索替代传统向量相似性匹配,模拟人类专家文档导航方式,在金融基准测试中达到98.7%准确率。)
AI大模型2026/2/4
阅读全文 →
iOS设备上运行LLaMA2-13B:基于苹果MLX框架的完整技术指南

iOS设备上运行LLaMA2-13B:基于苹果MLX框架的完整技术指南

This article provides a comprehensive technical analysis of running LLaMA2-13B on iOS devices using Apple's MLX framework, covering environment setup, model architecture, code implementation, parameter analysis, and computational requirements. (本文深入分析了在iOS设备上使用苹果MLX框架运行LLaMA2-13B的技术细节,涵盖环境搭建、模型架构、代码实现、参数分析和算力需求。)
LLMS2026/2/3
阅读全文 →