GEO

最新文章

326
UltraRAG:基于MCP架构的低代码可视化RAG开发框架

UltraRAG:基于MCP架构的低代码可视化RAG开发框架

UltraRAG is a low-code RAG development framework based on Model Context Protocol (MCP) architecture, emphasizing visual orchestration and reproducible evaluation workflows. It modularizes core components like retrieval, generation, and evaluation as independent MCP Servers, providing transparent and repeatable development processes through interactive UI and pipeline builders. (UltraRAG是一个基于模型上下文协议(MCP)架构的低代码检索增强生成(RAG)开发框架,强调可视化编排与可复现的评估流程。它将检索、生成与评估等核心组件封装为独立的MCP服务器,通过交互式UI和流水线构建器提供透明且可重复的研发流程。)
AI大模型2026/1/25
阅读全文 →
UltraRAG 2.0:基于MCP架构的开源框架,用YAML配置简化复杂RAG系统开发

UltraRAG 2.0:基于MCP架构的开源框架,用YAML配置简化复杂RAG系统开发

English Summary: UltraRAG 2.0 is an open-source framework based on Model Context Protocol (MCP) architecture that simplifies complex RAG system development through YAML configuration, enabling low-code implementation of multi-step reasoning, dynamic retrieval, and modular workflows. It addresses engineering bottlenecks in research and production RAG applications. 中文摘要翻译: UltraRAG 2.0是基于Model Context Protocol(MCP)架构的开源框架,通过YAML配置文件简化复杂RAG系统开发,实现低代码构建多轮推理、动态检索和模块化工作流。它解决了研究和生产环境中RAG应用的工程瓶颈问题。
AI大模型2026/1/25
阅读全文 →
AirLLM:4GB GPU上运行700亿参数大模型的开源框架

AirLLM:4GB GPU上运行700亿参数大模型的开源框架

AirLLM is an open-source framework that enables running 70B-parameter large language models on a single 4GB GPU through layer-wise offloading and memory optimization techniques, democratizing access to cutting-edge AI without traditional compression methods. (AirLLM是一个开源框架,通过分层卸载和内存优化技术,使700亿参数的大语言模型能够在单个4GB GPU上运行,无需传统压缩方法即可实现前沿AI的普及化访问。)
AI大模型2026/1/25
阅读全文 →
从聊天机器人到智能执行者:揭秘AI智能体的自动化革命

从聊天机器人到智能执行者:揭秘AI智能体的自动化革命

AI Agents represent a paradigm shift from passive text generation to active task execution, combining LLMs with planning, tool use, and memory to automate complex workflows. This article explores their architecture, working principles, and practical applications in content creation, highlighting the transition from chatbots to intelligent executors. AI智能体标志着从被动文本生成到主动任务执行的范式转变,它结合了大语言模型、规划、工具使用和记忆功能,能够自动化复杂工作流程。本文探讨了其在内容创作领域的架构、工作原理和实际应用,强调了从聊天机器人到智能执行者的转变。
AI大模型2026/1/24
阅读全文 →
LLMs.txt:为AI智能体提供结构化文档访问的新标准

LLMs.txt:为AI智能体提供结构化文档访问的新标准

LLMs.txt and llms-full.txt are specialized document formats designed to provide Large Language Models (LLMs) and AI agents with structured access to programming documentation and APIs, particularly useful in Integrated Development Environments (IDEs). The llms.txt format serves as an index file containing links with brief descriptions, while llms-full.txt contains all detailed content in a single file. Key considerations include file size limitations for LLM context windows and integration methods through MCP servers like mcpdoc. (llms.txt和llms-full.txt是专为大型语言模型和AI智能体设计的文档格式,提供对编程文档和API的结构化访问,在集成开发环境中尤其有用。llms.txt作为索引文件包含带简要描述的链接,而llms-full.txt将所有详细内容整合在单个文件中。关键考虑因素包括LLM上下文窗口的文件大小限制以及通过MCP服务器的集成方法。)
LLMS2026/1/24
阅读全文 →
Browser-Use:AI驱动的浏览器自动化革命,让AI像人类一样操作网页

Browser-Use:AI驱动的浏览器自动化革命,让AI像人类一样操作网页

Browser-Use is an open-source AI-powered browser automation platform that enables AI agents to interact with web pages like humans—navigating, clicking, filling forms, and scraping data—through natural language instructions or program logic. It bridges AI models with browsers, supports multiple LLMs, and offers both no-code interfaces and SDKs for technical and non-technical users. (Browser-Use是一个开源的AI驱动浏览器自动化平台,让AI代理能像人类一样与网页交互:导航、点击、填表、抓取数据等。它通过自然语言指令或程序逻辑连接AI与浏览器,支持多款LLM,并提供无代码界面和SDK,适合技术人员和非工程背景人员使用。)
AI大模型2026/1/24
阅读全文 →
构建高效LLM智能体:实用模式与最佳实践指南

构建高效LLM智能体:实用模式与最佳实践指南

English Summary: This comprehensive guide from Anthropic shares practical insights on building effective LLM agents, emphasizing simplicity over complexity. It distinguishes between workflows (predefined code paths) and agents (dynamic, self-directed systems), provides concrete patterns like prompt chaining, routing, and parallelization, and offers guidance on when to use frameworks versus direct API calls. The article stresses starting with simple solutions and adding complexity only when necessary, with real-world examples from customer implementations. 中文摘要翻译:本文是Anthropic分享的关于构建高效LLM智能体的实用指南,强调简单性优于复杂性。文章区分了工作流(预定义代码路径)和智能体(动态、自导向系统),提供了提示链、路由、并行化等具体模式,并就何时使用框架与直接API调用提供了指导。文章强调从简单解决方案开始,仅在必要时增加复杂性,并提供了客户实施的真实案例。
LLMS2026/1/24
阅读全文 →
4GB GPU运行Llama3 70B:AirLLM框架让高端AI触手可及

4GB GPU运行Llama3 70B:AirLLM框架让高端AI触手可及

This article demonstrates how to run the powerful Llama3 70B open-source LLM on just 4GB GPU memory using the AirLLM framework, making cutting-edge AI technology accessible to users with limited hardware resources. (本文展示了如何利用AirLLM框架,在仅4GB GPU内存的条件下运行强大的Llama3 70B开源大语言模型,使硬件资源有限的用户也能接触前沿AI技术。)
AI大模型2026/1/24
阅读全文 →
AirLLM:单卡4GB显存运行700亿大模型,革命性轻量化框架

AirLLM:单卡4GB显存运行700亿大模型,革命性轻量化框架

AirLLM is an innovative lightweight framework that enables running 70B parameter large language models on a single 4GB GPU through advanced memory optimization techniques, significantly reducing hardware costs while maintaining performance. (AirLLM是一个创新的轻量化框架,通过先进的内存优化技术,可在单张4GB GPU上运行700亿参数的大语言模型,大幅降低硬件成本的同时保持性能。)
AI大模型2026/1/24
阅读全文 →