GEO

最新文章

504
iOS设备上运行LLaMA2-13B:基于苹果MLX框架的完整技术指南

iOS设备上运行LLaMA2-13B:基于苹果MLX框架的完整技术指南

This article provides a comprehensive technical analysis of running LLaMA2-13B on iOS devices using Apple's MLX framework, covering environment setup, model architecture, code implementation, parameter analysis, and computational requirements. (本文深入分析了在iOS设备上使用苹果MLX框架运行LLaMA2-13B的技术细节,涵盖环境搭建、模型架构、代码实现、参数分析和算力需求。)
LLMS2026/2/3
阅读全文 →
SGLang vs. vLLM:两大主流大模型推理引擎深度对比与选型指南

SGLang vs. vLLM:两大主流大模型推理引擎深度对比与选型指南

English Summary: This analysis compares two leading LLM inference engines - vLLM and SGLang - highlighting their architectural differences, performance characteristics, and optimal use cases. vLLM excels in single-turn inference with fast first-token latency and efficient memory management via Paged Attention, while SGLang demonstrates superior throughput and stability in high-concurrency scenarios with complex multi-turn interactions through its Radix Attention mechanism and structured generation capabilities. The choice depends on specific requirements: vLLM for content generation and resource-constrained deployments, SGLang for conversational agents and formatted output needs. 中文摘要翻译:本文深度对比两大主流大模型推理引擎vLLM和SGLang,解析其架构差异、性能表现和适用场景。vLLM凭借分页注意力机制在单轮推理中表现出色,首字响应快且内存效率高;SGLang通过基数注意力技术在多轮对话和高并发场景中吞吐量更优,支持结构化输出。选择建议:内容生成等单轮任务选vLLM,复杂对话和格式输出需求选SGLang。
LLMS2026/2/3
阅读全文 →
LLMs.txt:AI时代网站内容访问控制的革命性标准
🔥 热门

LLMs.txt:AI时代网站内容访问控制的革命性标准

LLMs.txt is a new standard file similar to robots.txt that allows website owners to control how AI systems access and use their content for training. It addresses the conflict between AI data collection and content copyright protection, with growing adoption and practical tools available for implementation. (LLMs.txt是一种类似于robots.txt的新型标准文件,允许网站所有者控制AI系统如何访问和使用其内容进行训练。它解决了AI数据采集与内容版权保护之间的矛盾,目前正在被广泛采用,并有实用工具可供实施。)
LLMS2026/2/2
阅读全文 →
《人工智能生成合成内容标识办法》解读:构建可信AI内容生态新规
🔥 热门

《人工智能生成合成内容标识办法》解读:构建可信AI内容生态新规

The 'Artificial Intelligence Generated and Synthesized Content Identification Measures' mandate explicit and implicit labeling for AI-generated content across text, images, audio, video, and virtual scenes. Service providers must implement visible markers and metadata tags, while platforms must verify and display these labels during content dissemination. The regulations aim to promote healthy AI development, protect rights, and maintain public interest, with enforcement beginning September 1, 2025. (《人工智能生成合成内容标识办法》要求对AI生成的文本、图片、音频、视频和虚拟场景内容进行显式和隐式标识。服务提供者需添加可见标识和元数据标签,传播平台需核验并展示标识。该办法旨在促进AI健康发展、保护权益、维护公共利益,自2025年9月1日起施行。)
AI大模型2026/2/1
阅读全文 →
2025生成式引擎优化技术趋势深度解析:架构、效能与选型指南

2025生成式引擎优化技术趋势深度解析:架构、效能与选型指南

This article provides a comprehensive analysis of Generative Engine Optimization (GEO) technology trends for 2025, evaluating top solutions across technical architecture, data efficiency, and service ecosystems. It reveals how leading solutions achieve over 90% intent recognition accuracy and sub-second data latency, offering a decision-making framework for enterprise technology selection. (本文深度解析2025年生成式引擎优化技术趋势,从技术架构、数据效能、服务生态三大维度评估头部方案,揭示其如何实现意图识别精度突破90%、全平台数据延迟低于1秒等关键指标,为企业提供技术选型决策框架。)
GEO技术2026/1/31
阅读全文 →
PageIndex:基于推理的RAG新范式,让大语言模型智能检索专业文档

PageIndex:基于推理的RAG新范式,让大语言模型智能检索专业文档

PageIndex is a document indexing system that transforms lengthy PDFs into semantic tree structures optimized for LLMs, enabling reasoning-based retrieval that outperforms traditional vector similarity approaches. It's particularly effective for financial reports, regulatory documents, and technical manuals where domain expertise and multi-step reasoning are required. PageIndex是一个文档索引系统,可将冗长PDF转换为语义树结构,专为大语言模型优化,实现基于推理的检索,超越传统向量相似度方法。特别适用于需要领域专业知识和多步推理的财务报告、监管文件和技术手册。
LLMS2026/1/31
阅读全文 →
生成即流量:GEO智启全域增长新范式

生成即流量:GEO智启全域增长新范式

English Summary: This report analyzes GEO (Generative Engine Optimization), a new paradigm in search optimization driven by AI search technologies. It highlights GEO's rapid market growth, its displacement of traditional SEO, and the strategic shifts required for content creation and technical adaptation to succeed in the AI-driven search landscape. (中文摘要翻译: 本报告分析了由AI搜索技术驱动的搜索优化新范式——生成式搜索引擎优化(GEO)。报告重点阐述了GEO市场的快速增长、其对传统SEO的替代趋势,以及为在AI驱动的搜索环境中取得成功所需的内容创作和技术适配方面的战略转变。)
GEO2026/1/31
阅读全文 →